簡易檢索 / 詳目顯示

研究生: 郭豐瑋
Feng-Weei Kuo
論文名稱: 利用旋光量測技術研究蛋白質二級結構的變化
Studies on the structure change of biopolymers by optical rotation measurement
指導教授: 吳見明
Chien-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 36
中文關鍵詞: 旋光蛋白質二級結構變質
外文關鍵詞: optical rotation, protein, secondary structure, denaturation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質通常具有旋光性,且蛋白質中的二級結構如α螺旋、β平板因其構型不同所貢獻的旋光量亦不同。已知蛋白質會受外界環境,如溫度、pH值或經UV照射後的影響而使得其結構發生變化,而此變化通常是迅速的。傳統用以觀察蛋白質的結構的方法,如X-ray晶格繞射、核磁共振(NMR)等皆難以應用於其變化過程的觀察。在本次的研究中,我們利用了量測旋光角的方法來對蛋白質的構型變化作即時性的觀察。本研究利用相位可調式波片來放大旋光訊號,並結合鎖相放大器及數位資料擷取卡來建造一高解析度(6.41×10-4度)與即時性量測的系統。BSA是一種常用於免疫分析的蛋白質,其構型一半以上皆由α螺旋構成,其餘為隨機的圈。在本實驗中,我們藉由加熱BSA來觀察其構型的變化過程。結果指出,我們加熱濃度分別為0.67g/100mL, 1.33g/100mL以及2.66g/100mL的BSA所得的相位訊號變化的斜率成正比,斜率分別為-0.012±0.009, -0.031±0.004以及-0.067±0.013。由於量測到的旋光訊號變化是起因於其α螺旋經加熱後破壞成隨機的圈,因此結果說明了隨濃度的增加被破壞的α螺旋亦增多,使得量測得的訊號成比例關係。而由測到的斜率為負值亦可了解α螺旋在632.8nm的旋光貢獻為右旋。


    The secondary structures, i.e., the α-helix, β-sheet, and triple-helix, of protein may be denatured at a certain condition, for example, the pH-value, concentration of solvent, and beyond certain temperature. The transformation of denaturation is not well understood now. The X-ray diffraction crystallography and the nuclear magnetic resonance (NMR) can be used to detect the structures of protein; however, these two methods can not be applied to monitor the denaturation process of proteins at the present time. In addition, the X-ray diffraction crystallography can be only applied to observe protein powder or protein crystallization; therefore, it can’t observe the structures of protein dissolved in liquid. On the other hand, Circular dichroism (CD) spectroscopy is usually used to calculate the proportion of different protein structures; however, it is not a real-time system because the spectrum needs to be scanned. For this reason to construct a real-time detection system is highly required.
    In this study, we have built up a high resolution and real-time detection system to monitor the changes of secondary structure by utilizing a variable-retarder to amplify the rotation angle and a lock-in amplifier to enhance the signal-to-noise-ratio. We have verified that the structure changes and optical rotation changes of bovine serum albumin (BSA) were occurred via heating, the so-called thermal effect, where the thermal effect is directly related to denaturation of protein and therefore causes changes in optical rotation. We have demonstrated that by heating different concentrations of BSA, i.e., 0.67 % wt, 1.33 % wt, 2.66 % wt, the corresponding phase signal variations, as function of BSA concentration, are -0.012±0.009, -0.031±0.004 and -0.067±0.013, respectively, where the phase signal is directly corresponding to optical rotation.

    中文摘要.........................Ⅰ 英文摘要.........................Ⅱ 目錄...........................Ⅲ 圖目錄..........................Ⅳ 第一章 緒論 .......................1 1.1 前言........................1 1.2 文獻回顧......................2 1.2.1 X-ray晶格繞射..................2 1.2.2 圓偏振的二色性光譜................3 1.2.3 旋光量測.....................7 1.3 研究目的......................9 第二章 實驗架構理論與系統校正..............10 2.1 實驗架構 .....................10 2.2 放大機制 .....................12 2.2 系統校正.....................13 第三章 實驗.......................16 3.1 系統解析度的測量 .................16 3.2 即時旋光變化測量.................18 3.3 蛋白質構型變化的測量...............20 第四章 結果與討論....................28 4.1 蛋白質構型變化測量結果..............28 第五章 結論與未來展望..................33 參考文獻.........................34 圖 目 錄 圖1.1 布拉格晶體繞射示意圖................3 圖1.2 (a)線性偏振光分為左右兩圓偏振光示意圖; (b)線性偏振光經過圓二色性後示意圖.........5 圖1.3 蛋白質不同結構的CD(橫線)光譜與ORD(點狀)示意圖...6 圖1.4 不同溫度下所測得的圓二色性光譜圖..........6 圖1.5 (a)線性偏振光分為左右兩圓偏振光示意圖; (b)線性偏振光經過光學活性物質後示意圖.......8 圖2.1 實驗架構圖 ....................11 圖2.2 模擬不同相位延遲量時,θ與 的關係圖......13 圖2.3 相位可調式波片快軸於22.5。附近快軸與相位示意圖..14 圖2.4 相位可調式波片快軸與斜率關係示意圖........15 圖3.1 (a)右旋葡萄糖對相位作圖(b)左旋葡萄糖對相位作圖..18 圖3.2 無壓克力罩下,不同量變旋□加入α-D-glucose溶液所得的     變旋曲線圖....................20 圖3.3 有壓克力罩下,不同量變旋□加入α-D-glucose溶液所得的變旋曲線圖.....................21 圖3.4 (a)BSA的立體構造示意圖。(b)管狀標示的地方即為BSA的α螺旋.......................22 圖3.5 隔水加熱裝置圖..................22 圖3.6 時間與加熱變化溫度的關係圖............24 圖3.7 溫度梯度造成膨脹大小不一致示意圖.........25 圖3.8 (a)為先於外加熱水後移至樣品槽中冷卻之相位與溫度關係    (b)去除溫度不均後所得的相位與溫度關係圖......25 圖3.9 (a)至(e)為對樣品槽裡的水作隔水加熱並作五重複...28 圖4.1 加熱濃度分別為0.67g/100mL, 1.33g/100mL以及2.66g/100所 得的相位對溫度變化作圖...............31 圖4.2 加熱濃度分別為0.67g/100mL, 1.33g/100mL以及2.66g/100mL 並扣除光彈效應後所得的相位對溫度變化作圖.....31 圖4.3 加熱至55度時,BSA濃度為2.66g/100mL的聚體現象...32 圖4.4 BSA濃度與加熱BSA所獲得相位變化率作線性擬合圖...32

    [1] Eugene Hecht, optics, ch. 8, Addison-Wesley, Massachusetts, 1998.
    [2] J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter”, Meas. Sci. Technol., 14, 55-58(2003).
    [3] C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with optical heterodyne polarimeter”, Appl. Opt., 37, 3553-3557(1998).
    [4] R. O. Esenaliev, K. V. Larin, and I. V. Larina, “Noninvasive monitoring of glucose concentration with optical coherence tomography”, Opt. Lett., 26 992-994(2001).
    [5] K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study”, Phys. Med. Biol., 48, 1371-1390(2003).
    [6] R. J. McNichols, B. D. Cameron, and G. L. Cote, “Development of a noninvasive polarimetric glucose sensor”, IEEE-LEOS Newsletter, 12, 30-31(1998).
    [7] R. R. Ansari, S. Bockle and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor”, J. Biomed. Opt., 9(1), 103-115(2004).
    [8] I.A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media”, Opt. Eng. 39, 353-362(2000).
    [9] T. Mitsui and K. Sakurai, “Precise measurement of the refractive index and optical rotatory power of a suspension by a delayed optical heterodyne technique”, Appl. Opt. 35, 2253–2258 (1996).
    [10] C. Chou, W. C. Kuo, T. S. Hsieh, and H. K. Teng, “A phase sensitive optical rotation measurement in a scattered chiral medium using a Zeeman laser”, Opt. Comm., 230, 259-266(2004).
    [11] I. A. Vitkin and K. C. Hadley, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media”, J. Biomed. Opt., 7, 291-299(2002).
    [12] A. J. Majewski, M. Sanzari, H. L. Cui, and P. Torzilli, “Effects of ultraviolet radiation on the type-I collagen protein triple helical structure:A method for measuring structural changes through optical activity”, phys. rev. E, 65, 031920(2002).
    [13] J. R. Macdonald and H. P. Ba¨chinger, “HSP47 Binds Cooperatively to Triple Helical Type I Collagen but Has Little Effect on the Thermal Stability or Rate of Refolding”, J. Biol. Chem., 276, 25399-25403(2001).
    [14] C. A. Rohl and R. L. Baldwin, “Comparison of NH Exchange and Circular Dichroism as Techniques for Measuring the Parameters of the Helix-Coil Transition in Peptides”, Biochemistry, 36, 8435-8442(1997).
    [15] J. P. Attfield, A. W. Sleight ,and A. K. Cheetham, “Structure determination of α-CrPO4 from powder synchrotron X-ray data”, Nature, 322, 620-622(1986).
    [16] T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. I. Shinzawa, R. Nakashima, R. Yaono, and S. Yoshikawa, “Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 □”, Science, 269, 1069-1074(1995).
    [17] Y. A. Antonov and B. A. Wolf, “Calorimetric and Structural Investigation of the Interaction between Bovine Serum Albumin and High Molecular Weight Dextran in Water”, Biomacromolecules, 6, 2980-2989(2005).
    [18] K. Yamada, J. Sato, H. Oku, and R. Katakai, “Conformation of transmembrane partial peptides of peripheral myelin protein”, J. Peptide Res., 62, 78-87(2003).
    [19] W. B. Gratzer and D. A. Cowburn, “Optical Activity of Biopolymers”, Nature, 222, 426 - 431(1969).
    [20] J. Y. Lin, K. H. Chen, and D. C. Su, “Improved method for measuring small optical rotation angle of chiral medium”, Opt. Comm., 238, 113-118(2004).
    [21] C. M. Wu and Y. C. Tsai, “Angular displacement-enhanced heterodyne polarimeter for the measurement of optically active media”, Sen. Actuator B, 120, 324-328(2006).
    [22] 蔡英傑,"靈敏度增強型光學外差式偏光儀之研發及應用於對掌性物質的旋光角度量測",清華大學原科系碩士論文,民國93年。
    [23] L. G. Wade, Jr., Organic Chemistry, ch. 23, Prentice Hall International, 1999.
    [24] http://www.ncbi.nlm.nih.gov.
    [25] N. E. Dweltz and V. Mahadevan, “Optical rotation of soluble feather keratin”, Biochem. J., 81, 134-135(1961).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE