研究生: |
郭豐瑋 Feng-Weei Kuo |
---|---|
論文名稱: |
利用旋光量測技術研究蛋白質二級結構的變化 Studies on the structure change of biopolymers by optical rotation measurement |
指導教授: |
吳見明
Chien-Ming Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 36 |
中文關鍵詞: | 旋光 、蛋白質 、二級結構 、變質 |
外文關鍵詞: | optical rotation, protein, secondary structure, denaturation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白質通常具有旋光性,且蛋白質中的二級結構如α螺旋、β平板因其構型不同所貢獻的旋光量亦不同。已知蛋白質會受外界環境,如溫度、pH值或經UV照射後的影響而使得其結構發生變化,而此變化通常是迅速的。傳統用以觀察蛋白質的結構的方法,如X-ray晶格繞射、核磁共振(NMR)等皆難以應用於其變化過程的觀察。在本次的研究中,我們利用了量測旋光角的方法來對蛋白質的構型變化作即時性的觀察。本研究利用相位可調式波片來放大旋光訊號,並結合鎖相放大器及數位資料擷取卡來建造一高解析度(6.41×10-4度)與即時性量測的系統。BSA是一種常用於免疫分析的蛋白質,其構型一半以上皆由α螺旋構成,其餘為隨機的圈。在本實驗中,我們藉由加熱BSA來觀察其構型的變化過程。結果指出,我們加熱濃度分別為0.67g/100mL, 1.33g/100mL以及2.66g/100mL的BSA所得的相位訊號變化的斜率成正比,斜率分別為-0.012±0.009, -0.031±0.004以及-0.067±0.013。由於量測到的旋光訊號變化是起因於其α螺旋經加熱後破壞成隨機的圈,因此結果說明了隨濃度的增加被破壞的α螺旋亦增多,使得量測得的訊號成比例關係。而由測到的斜率為負值亦可了解α螺旋在632.8nm的旋光貢獻為右旋。
The secondary structures, i.e., the α-helix, β-sheet, and triple-helix, of protein may be denatured at a certain condition, for example, the pH-value, concentration of solvent, and beyond certain temperature. The transformation of denaturation is not well understood now. The X-ray diffraction crystallography and the nuclear magnetic resonance (NMR) can be used to detect the structures of protein; however, these two methods can not be applied to monitor the denaturation process of proteins at the present time. In addition, the X-ray diffraction crystallography can be only applied to observe protein powder or protein crystallization; therefore, it can’t observe the structures of protein dissolved in liquid. On the other hand, Circular dichroism (CD) spectroscopy is usually used to calculate the proportion of different protein structures; however, it is not a real-time system because the spectrum needs to be scanned. For this reason to construct a real-time detection system is highly required.
In this study, we have built up a high resolution and real-time detection system to monitor the changes of secondary structure by utilizing a variable-retarder to amplify the rotation angle and a lock-in amplifier to enhance the signal-to-noise-ratio. We have verified that the structure changes and optical rotation changes of bovine serum albumin (BSA) were occurred via heating, the so-called thermal effect, where the thermal effect is directly related to denaturation of protein and therefore causes changes in optical rotation. We have demonstrated that by heating different concentrations of BSA, i.e., 0.67 % wt, 1.33 % wt, 2.66 % wt, the corresponding phase signal variations, as function of BSA concentration, are -0.012±0.009, -0.031±0.004 and -0.067±0.013, respectively, where the phase signal is directly corresponding to optical rotation.
[1] Eugene Hecht, optics, ch. 8, Addison-Wesley, Massachusetts, 1998.
[2] J. Y. Lin and D. C. Su, “A new type of optical heterodyne polarimeter”, Meas. Sci. Technol., 14, 55-58(2003).
[3] C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, “Noninvasive glucose monitoring in vivo with optical heterodyne polarimeter”, Appl. Opt., 37, 3553-3557(1998).
[4] R. O. Esenaliev, K. V. Larin, and I. V. Larina, “Noninvasive monitoring of glucose concentration with optical coherence tomography”, Opt. Lett., 26 992-994(2001).
[5] K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, “Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study”, Phys. Med. Biol., 48, 1371-1390(2003).
[6] R. J. McNichols, B. D. Cameron, and G. L. Cote, “Development of a noninvasive polarimetric glucose sensor”, IEEE-LEOS Newsletter, 12, 30-31(1998).
[7] R. R. Ansari, S. Bockle and L. Rovati, “New optical scheme for a polarimetric-based glucose sensor”, J. Biomed. Opt., 9(1), 103-115(2004).
[8] I.A. Vitkin and E. Hoskinson, “Polarization studies in multiply scattering chiral media”, Opt. Eng. 39, 353-362(2000).
[9] T. Mitsui and K. Sakurai, “Precise measurement of the refractive index and optical rotatory power of a suspension by a delayed optical heterodyne technique”, Appl. Opt. 35, 2253–2258 (1996).
[10] C. Chou, W. C. Kuo, T. S. Hsieh, and H. K. Teng, “A phase sensitive optical rotation measurement in a scattered chiral medium using a Zeeman laser”, Opt. Comm., 230, 259-266(2004).
[11] I. A. Vitkin and K. C. Hadley, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media”, J. Biomed. Opt., 7, 291-299(2002).
[12] A. J. Majewski, M. Sanzari, H. L. Cui, and P. Torzilli, “Effects of ultraviolet radiation on the type-I collagen protein triple helical structure:A method for measuring structural changes through optical activity”, phys. rev. E, 65, 031920(2002).
[13] J. R. Macdonald and H. P. Ba¨chinger, “HSP47 Binds Cooperatively to Triple Helical Type I Collagen but Has Little Effect on the Thermal Stability or Rate of Refolding”, J. Biol. Chem., 276, 25399-25403(2001).
[14] C. A. Rohl and R. L. Baldwin, “Comparison of NH Exchange and Circular Dichroism as Techniques for Measuring the Parameters of the Helix-Coil Transition in Peptides”, Biochemistry, 36, 8435-8442(1997).
[15] J. P. Attfield, A. W. Sleight ,and A. K. Cheetham, “Structure determination of α-CrPO4 from powder synchrotron X-ray data”, Nature, 322, 620-622(1986).
[16] T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. I. Shinzawa, R. Nakashima, R. Yaono, and S. Yoshikawa, “Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 □”, Science, 269, 1069-1074(1995).
[17] Y. A. Antonov and B. A. Wolf, “Calorimetric and Structural Investigation of the Interaction between Bovine Serum Albumin and High Molecular Weight Dextran in Water”, Biomacromolecules, 6, 2980-2989(2005).
[18] K. Yamada, J. Sato, H. Oku, and R. Katakai, “Conformation of transmembrane partial peptides of peripheral myelin protein”, J. Peptide Res., 62, 78-87(2003).
[19] W. B. Gratzer and D. A. Cowburn, “Optical Activity of Biopolymers”, Nature, 222, 426 - 431(1969).
[20] J. Y. Lin, K. H. Chen, and D. C. Su, “Improved method for measuring small optical rotation angle of chiral medium”, Opt. Comm., 238, 113-118(2004).
[21] C. M. Wu and Y. C. Tsai, “Angular displacement-enhanced heterodyne polarimeter for the measurement of optically active media”, Sen. Actuator B, 120, 324-328(2006).
[22] 蔡英傑,"靈敏度增強型光學外差式偏光儀之研發及應用於對掌性物質的旋光角度量測",清華大學原科系碩士論文,民國93年。
[23] L. G. Wade, Jr., Organic Chemistry, ch. 23, Prentice Hall International, 1999.
[24] http://www.ncbi.nlm.nih.gov.
[25] N. E. Dweltz and V. Mahadevan, “Optical rotation of soluble feather keratin”, Biochem. J., 81, 134-135(1961).