研究生: |
劉宇軒 Liu, Yu-Hsuan |
---|---|
論文名稱: |
垂直進光鍺吸收光偵測器與聚合物微透鏡整合以及臨界耦合鍺吸收光偵測器應用於高速光通訊系統 Normal-Incidence Germanium Photodetectors Integrated with Polymer Microlenses and Critically-Coupled Germanium Photodetectors for High-Speed Optical Fiber Communication Applications |
指導教授: |
王立康
Wang, Li-Karn 那允中 Na, Neil |
口試委員: |
李明昌
Li, Ming-Chang 劉昌樺 Liu, Chang-Hua 鄭致灝 Cheng, Chih-Hao |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 137 |
中文關鍵詞: | 鍺光偵測器 、聚合物微透鏡 、光酸擴散 、可靠度測試 、高速 、光通訊 |
外文關鍵詞: | germanium photodiode, polymer microlens, photo-acid diffusion, reliability test, high speed, optical communication |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現代光通訊系統中,傳統之垂直入射型光電探測器(normal-incidence photodetectors)普遍面臨頻寬與量子效率(quantum efficiency, QE)之間的設計取捨,特別是在長波長高資料傳輸速率之應用下,該限制尤為嚴重。例如,目前市售操作於1310 nm波長且支援25 Gbps傳輸速率之光電探測器,其最大響應度(responsivity)通常受限於0.8 A/W以下。為克服上述挑戰,本研究設計並展示一高速度、背面入射(backside-incidence)、臨界耦合(critically-coupled)之SOI(silicon-on-insulator)基板上鍺(Ge)光電探測器,成功實現高量子效率與高頻寬之雙重優勢。該元件在-1 V偏壓條件下,量測所得之體(表面)暗電流密度分別為13 mA/cm²(0.79 µA/cm)。此外,針對直徑20 µm之元件,於1310 nm波長下量測得到響應度為0.87 A/W,且其3 dB光學頻寬達26 GHz。
進一步地,本研究提出一創新之光酸擴散(photon-acid diffusion)技術,成功實現高速度、多通道(four-channel)光接收器之聚合物微透鏡(polymer microlenses, MLs)整合。該光接收器採用製作於200 mm矽基板上之垂直入射Ge p-i-n光電二極體(photodiode)。對於直徑29 µm之光電二極體,搭配直徑54 µm之微透鏡,於850 nm波長與-3 V偏壓操作條件下,量測所得暗電流為138 nA,響應度為0.6 A/W,3 dB頻寬為21.4 GHz,有效入光孔徑為54 µm。藉由增大有效入光孔徑,有效緩解光電探測器在孔徑尺寸與頻寬之間的設計取捨,並大幅提升光纖與偵測器在模組對準容差(optical fiber misalignment tolerance),由傳統之±5 µm擴展至±15 µm,進一步優化模組封裝容忍度。
此外,本研究所開發之光接收器,於資料傳輸速率為25.78 Gb/s,非歸零(non-return-to-zero, NRZ)編碼下,達成10⁻¹²位元錯誤率(bit error rate, BER)之靈敏度為-9.2 dBm。元件可靠度測試結果證實,本研究製作之鍺光電二極體整合聚合物微透鏡後,符合GR-468可靠度標準。此一新穎之光接收器為業界首創,展現卓越之元件特性,包括高性能、高良率、高產能、低製造成本,且具備與CMOS製程兼容之優勢,極具應用於400 Gb/s脈衝振幅調變四階(pulse-amplitude modulation four-level, PAM4)光通訊系統之潛力。
In contemporary optical communication systems, conventional normal-incidence photodetectors often face a tradeoff between bandwidth and quantum efficiency, particularly detrimental for long-wavelength communication systems operating at elevated data rates. For instance, the maximum responsivity of commercially available 25 Gbps photodetectors at a 1310 nm wavelength is restricted to below 0.8 A/W. To address this challenge, we have designed and demonstrated a high-speed, backside-incidence, critically-coupled Ge on SOI photodetector featuring improved quantum efficiency and bandwidth. The photodetector exhibits a low bulk (surface) dark current density of 13 mA/cm² (0.79 µA/cm) at a -1 V bias. It demonstrates a responsivity of 0.87 A/W at 1310 nm with a measured 3 dB optical bandwidth of 26 GHz for a 20 µm diameter device. Additionally, we introduce a novel photon-acid diffusion method that facilitates the integration of polymer microlenses (MLs) on a four-channel, high-speed photo-receiver comprised of normal-incidence Ge p-i-n photodiodes fabricated on a 200 mm silicon substrate. For a 29 µm diameter photodiode capped with a 54 µm diameter microlens, we measured a dark current of 138 nA, a responsivity of 0.6 A/W, a 3 dB bandwidth of 21.4 GHz, and an effective aperture size of 54 µm at -3 V bias and a wavelength of 850 nm. The enlarged aperture significantly mitigates the tradeoff between aperture size and bandwidth and enhances optical fiber misalignment tolerance from ±5 µm to ±15 µm, thereby improving module packaging tolerance. The sensitivity of the photo-receiver was determined to be -9.2 dBm at a data rate of 25.78 Gb/s with a bit error rate of 10⁻¹² using non-return-to-zero (NRZ) transmission. Reliability tests validate that the fabricated Ge photodiodes integrated with polymer microlenses comply with the GR-468 reliability assurance standard. This unique photo-receiver, as the first of its kind, presents excellent performance, high yield, high throughput, low cost, and compatibility with CMOS fabrication processes, making it a promising candidate for applications in 400 Gb/s pulse-amplitude modulation four-level (PAM4) communication systems.
1. Luan, H., Wada, K., Kimerling, L., Masini, G., Colace, L., & Assanto, G. (2001). High efficiency photodetectors based on high quality epitaxial germanium grown on silicon substrates. Optical Materials, 17(1–2), 71–73. https://doi.org/10.1016/s0925-3467(01)00021-0
2. Masini, C., Calace, L., Assanto, G., Luan, N. H., & Kimerling, L. (2001). High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration. IEEE Transactions on Electron Devices, 48(6), 1092–1096. https://doi.org/10.1109/16.925232
3. Morse, M., Dosunmu, O., Sarid, G., & Chetrit, Y. (2006a). Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules. IEEE Photonics Technology Letters, 18(23), 2442–2444. https://doi.org/10.1109/lpt.2006.885623
4. Suh, N. D., Kim, N. S., Joo, N. J., & Kim, N. G. (2009). 36-GHz High-Responsivity Ge Photodetectors Grown by RPCVD. IEEE Photonics Technology Letters, 21(10), 672–674. https://doi.org/10.1109/lpt.2009.2016761
5. Kim, I. G., Jang, K., Joo, J., Kim, S., Kim, S., Choi, K., Oh, J. H., Kim, S. A., & Kim, G. (2013). High-performance photoreceivers based on vertical-illumination type Ge-on-Si photodetectors operating up to 43 Gb/s at λ~1550nm. Optics Express, 21(25), 30716. https://doi.org/10.1364/oe.21.030716
6. Dosunmu, O., Can, D., Emsley, M., Kimerling, L., & Unlu. (2005a). High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation. IEEE Photonics Technology Letters, 17(1), 175–177. https://doi.org/10.1109/lpt.2004.836917
7. Klinger, S., Berroth, M., Kaschel, M., Oehme, M., & Kasper, E. (2009). Ge-on-Si p-i-n Photodiodes With a 3-dB Bandwidth of 49 GHz. IEEE Photonics Technology Letters, 21(13), 920–922. https://doi.org/10.1109/lpt.2009.2020510
8. Colace, L., Ferrara, P., Assanto, G., Fulgoni, D., & Nash, L. (2007). Low Dark-Current Germanium-on-Silicon Near-Infrared Detectors. IEEE Photonics Technology Letters, 19(22), 1813–1815. https://doi.org/10.1109/lpt.2007.907578
9. Jutzi, M., Berroth, M., Wohl, G., Oehme, M., & Kasper, E. (2005). Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth. IEEE Photonics Technology Letters, 17(7), 1510–1512. https://doi.org/10.1109/lpt.2005.848546
10. Liu, Y., Wu, T., Cheng, S., Liu, H., Lin, C., Chen, H., Lee, M. M., & Na, N. (2017). Backside-incidence critically coupled Ge on SOI photodetector. In Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE. https://doi.org/10.1117/12.2251694
11. Kim, G., Kim, S., Kim, S. A., Oh, J. H., & Jang, K. (2018). NDR-effect vertical-illumination-type Ge-on-Si avalanche photodetector. Optics Letters, 43(22), 5583. https://doi.org/10.1364/ol.43.005583
12. Li, X., Peng, L., Liu, Z., Liu, X., Zheng, J., Zuo, Y., Xue, C., & Cheng, B. (2020). High-power back-to-back dual-absorption germanium photodetector. Optics Letters, 45(6), 1358. https://doi.org/10.1364/ol.388011
13. Song, J., Yuan, S., Cui, C., Wang, Y., Li, Z., Wang, A. X., Zeng, C., & Xia, J. (2020). High-efficiency and high-speed germanium photodetector enabled by multiresonant photonic crystal. Nanophotonics, 10(3), 1081–1087. https://doi.org/10.1515/nanoph-2020-0455
14. Xue, N. H., Xue, N. C., Cheng, N. B., Yu, N. Y., & Wang, N. Q. (2010). High-Saturation-Power and High-Speed Ge-on-SOI p-i-n Photodetectors. IEEE Electron Device Letters, 31(7), 701–703. https://doi.org/10.1109/led.2010.2048997
15. Virot, L., Benedikovic, D., Szelag, B., Alonso-Ramos, C., Karakus, B., Hartmann, J., Roux, X. L., Crozat, P., Cassan, E., Marris-Morini, D., Baudot, C., Boeuf, F., Fédéli, J., Kopp, C., & Vivien, L. (2017). Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction. Optics Express, 25(16), 19487. https://doi.org/10.1364/oe.25.019487
16. Cui, J., & Zhou, Z. (2017). High-performance Ge-on-Si photodetector with optimized DBR location. Optics Letters, 42(24), 5141. https://doi.org/10.1364/ol.42.005141
17. Ko, Y., Choe, J., Han, W. S., Lee, S., Han, Y., Jung, H., Youn, C. J., Kim, J., & Baek, Y. (2018). High-speed waveguide photodetector for 64 Gbaud coherent receiver. Optics Letters, 43(3), 579. https://doi.org/10.1364/ol.43.000579
18. Wu, T., Chou, C., Lee, M. M., & Na, N. (2012). A critically coupled Germanium photodetector under vertical illumination. Optics Express, 20(28), 29338. https://doi.org/10.1364/oe.20.029338
19. Troitski, Y. V. (1995). Synthesis of mirrors with anomalous dispersion of the reflection phase. Optical Engineering, 34(5), 1503. https://doi.org/10.1117/12.199868
20. Gryshchenko, S., Demin, A., & Lysak, V. (2008). Quantum efficiency and reflection in resonant cavity photodetector with anomalous dispersion mirror. In 2008 4th International Conference on Advanced Optoelectronics and Lasers. https://doi.org/10.1109/caol.2008.4671885
21. Gryshchenko, S., Dyomin, A., Lysak, V., & Sukhoivanov, I. (2008). Optical absorption and quantum efficiency in the resonant-cavity detector with anomalous dispersion layer.
22. Nussbaum, P., Völkel, R., Herzig, H. P., Eisner, M., & Haselbeck, S. (1997). Design, fabrication and testing of microlens arrays for sensors and microsystems. Pure and Applied Optics Journal of the European Optical Society Part A, 6(6), 617–636. https://doi.org/10.1088/0963-9659/6/6/004
23. Jucius, D., Grigaliūnas, V., Lazauskas, A., Sapeliauskas, E., Abakevičienė, B., Smetona, S., & Tamulevičius, S. (2016). Effect of fused silica surface wettability on thermal reflow of polymer microlens arrays. Microsystem Technologies, 23(6), 2193–2206. https://doi.org/10.1007/s00542-016-2975-3
24. Kim, J. Y., Brauer, N. B., Fakhfouri, V., Boiko, D. L., Charbon, E., Grutzner, G., & Brugger, J. (2011). Hybrid polymer microlens arrays with high numerical apertures fabricated using simple ink-jet printing technique. Optical Materials Express, 1(2), 259. https://doi.org/10.1364/ome.1.000259
25. Kuo, S., & Lin, C. (2010). Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method. Optics Express, 18(18), 19114. https://doi.org/10.1364/oe.18.019114
26. Knieling, T., Shafi, M., Lang, W., & Benecke, W. (2012). Microlens array production in a microtechnological dry etch and reflow process for display applications. Journal of the European Optical Society Rapid Publications, 7, 12007. https://doi.org/10.2971/jeos.2012.12007
27. Chen, Q., Li, G., & Zhao, J. (2011). Curved SU-8 structure fabrication based on the acid-diffusion effect. In 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems. https://doi.org/10.1109/memsys.2011.5734402
28. Ogawa, I., Ohyama, T., Tanobe, H., Kasahara, R., Tsunashima, S., Sakamaki, Y., & Kawakami, H. (2011). 100-Gbit/s Optical Receiver Front-end Module Technology. Deleted Journal, 9(3), 55–61. https://doi.org/10.53829/ntr201103fa9
29. Lee, J., Chiang, P., Peng, P., Chen, L., & Weng, C. (2015). Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies. IEEE Journal of Solid-State Circuits, 50(9), 2061–2073. https://doi.org/10.1109/jssc.2015.2433269
30. Liu, J., Cannon, D. D., Wada, K., Ishikawa, Y., Jongthammanurak, S., Danielson, D. T., Michel, J., & Kimerling, L. C. (2005). Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Applied Physics Letters, 87(1). https://doi.org/10.1063/1.1993749
31. Na Optical Fiber Communication 1.2 the General System 1.3 Advantages of Optical Fiber Communication Optical Fiber Waveguides 2.1 Introduction 2.2 Ray Theory Transmission 2.3 Electromagnetic Mode Theory for Optical Propagation 2.4 Cylindrical Fiber 2.5 Single-mode Fibers 2.6 Photonic Crystal Fibers Prob.
32. Nelson, B. E., Gerken, M., Miller, D. a. B., Piestun, R., Lin, C., & Harris, J. S. (2000). Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting. Optics Letters, 25(20), 1502. https://doi.org/10.1364/ol.25.001502
33. Vermeulen, D., Selvaraja, S., Verheyen, P., Lepage, G., Bogaerts, W., Absil, P., Van Thourhout, D., & Roelkens, G. (2010). High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible Silicon-On-Insulator platform. Optics Express, 18(17), 18278. https://doi.org/10.1364/oe.18.018278
34. Yariv, A. (2000). Universal relations for coupling of optical power between microresonators and dielectric waveguides. Electronics Letters, 36(4), 321. https://doi.org/10.1049/el:20000340
35. Yariv, A. (2002). Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technology Letters, 14(4), 483–485. https://doi.org/10.1109/68.992585
36. Barkai, A., Liu, A., Kim, D., Cohen, R., Elek, N., Chang, H., Malik, B., Gabay, R., Jones, R., Paniccia, M., & Izhaky, N. (2008). Double-Stage Taper for Coupling Between SOI Waveguides and Single-Mode Fiber. Journal of Lightwave Technology, 26(24), 3860–3865. https://doi.org/10.1109/jlt.2008.928199
37. Na, N., Frish, H., Hsieh, I., Harel, O., George, R., Barkai, A., & Rong, H. (2011). Efficient broadband silicon-on-insulator grating coupler with low backreflection. Optics Letters, 36(11), 2101. https://doi.org/10.1364/ol.36.002101
38. Na, N., & Yin, N. T. (2012). Misalignment-Tolerant Spot-Size Converter for Efficient Coupling Between Single-Mode Fibers and Integrated Optical Receivers. IEEE Photonics Journal, 4(1), 187–193. https://doi.org/10.1109/jphot.2012.2183582
39. Casalino, M., Coppola, G., Iodice, M., Rendina, I., & Sirleto, L. (2012). Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm. Optics Express, 20(11), 12599. https://doi.org/10.1364/oe.20.012599
40. Chen, C., & Fainman, Y. (2007). Photonic Bandgap Microcavities With Flat-Top Response. IEEE Journal of Selected Topics in Quantum Electronics, 13(2), 262–269. https://doi.org/10.1109/jstqe.2007.894187
41. Kishino, K., Unlu, Chyi, J., Reed, J., Arsenault, L., & Morkoc, H. (1991). Resonant cavity-enhanced (RCE) photodetectors. IEEE Journal of Quantum Electronics, 27(8), 2025–2034. https://doi.org/10.1109/3.83412
42. Ota, Y. (1983). Growth of high quality Ge MBE film. Journal of Crystal Growth, 61(3), 431–438. https://doi.org/10.1016/0022-0248(83)90171-9
43. Oehme, M., Werner, J., Kirfel, O., & Kasper, E. (2008). MBE growth of SiGe with high Ge content for optical applications. Applied Surface Science, 254(19), 6238–6241. https://doi.org/10.1016/j.apsusc.2008.02.128
44. Yu, N. H., Ren, N. S., Jung, N. W. S., Okyay, A., Miller, D., & Saraswat, K. (2009). High-Efficiency p-i-n Photodetectors on Selective-Area-Grown Ge for Monolithic Integration. IEEE Electron Device Letters, 30(11), 1161–1163. https://doi.org/10.1109/led.2009.2030905
45. Tada, M., Park, J., Kuzum, D., Thareja, G., Jain, J. R., Nishi, Y., & Saraswat, K. C. (2010). Low Temperature Germanium Growth on Silicon Oxide Using Boron Seed Layer and In Situ Dopant Activation. Journal of the Electrochemical Society, 157(3), H371. https://doi.org/10.1149/1.3295703
46. Yamamoto, Y., Zaumseil, P., Arguirov, T., Kittler, M., & Tillack, B. (2011). Low threading dislocation density Ge deposited on Si (100) using RPCVD. Solid-State Electronics, 60(1), 2–6. https://doi.org/10.1016/j.sse.2011.01.032
47. Phung, T. H., Chen, M., Kang, H. J., Zhang, C., Yu, M., & Zhu, C. (2010). Rapid-melting-growth of Ge on insulator using Cobalt (Co) induced-crystallized Ge as the seed for lateral growth. In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology. https://doi.org/10.1109/icsict.2010.5667453
48. Bai, X., Chen, C., Griffin, P. B., & Plummer, J. D. (2014). Si incorporation from the seed into Ge stripes crystallized using rapid melt growth. Applied Physics Letters, 104(5). https://doi.org/10.1063/1.4863976
49. Hsin, C., & Chou, C. (2019). Buffer-Free Ge/Si by Rapid Melting Growth Technique for Separate Absorption and Multiplication Avalanche Photodetectors. IEEE Electron Device Letters, 40(6), 945–948. https://doi.org/10.1109/led.2019.2910047
50. Chaurasia, S., Raghavan, S., & Avasthi, S. (n.d.). Epitaxial germanium thin films on silicon (100) using two-step process. In 2016 3rd International Conference on Emerging Electronics (ICEE). https://doi.org/10.1109/icemelec.2016.8074631
51. Ang, K., Ng, J. W., Lo, G., & Kwong, D. (2009). Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium p-i-n photodetector. Applied Physics Letters, 94(22). https://doi.org/10.1063/1.3151913
52. Takenaka, M., Morii, K., Sugiyama, M., Nakano, Y., & Takagi, S. (2012). Dark current reduction of Ge photodetector by GeO_2 surface passivation and gas-phase doping. Optics Express, 20(8), 8718. https://doi.org/10.1364/oe.20.008718
53. Huang, Z., Oh, J., & Campbell, J. C. (2004). Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers. Applied Physics Letters, 85(15), 3286–3288. https://doi.org/10.1063/1.1805706
54. Bandaru, P., Sahni, S., Yablonovitch, E., Liu, J., Kim, H., & Xie, Y. (2004). Fabrication and characterization of low temperature (<450°C) grown p-Ge/n-Si photodetectors for silicon based photonics. Materials Science and Engineering B, 113(1), 79–84. https://doi.org/10.1016/j.mseb.2004.07.007
55. Huang, Y., Wang, C., & Kim, Y. (2014). Etch Pit Formation on Germanium Alloys by in situ Gaseous Hydrogen Chloride Etching. ECS Transactions, 64(6), 223–230. https://doi.org/10.1149/06406.0223ecst
56. AZ P4620. Available online: www.azem.com (accessed on 8 Octorber 2018).
57. OrmoComp. Available online: www.microresist.de (accessed on 30 September 2016).
58. SU-8 3000. Available online: www.microchem.com (accessed on 28 May 2018).
59. Morse, M., Dosunmu, O., Sarid, G., & Chetrit, Y. (2006c). Performance of Ge-on-Si p-i-n Photodetectors for Standard Receiver Modules. IEEE Photonics Technology Letters, 18(23), 2442–2444. https://doi.org/10.1109/lpt.2006.885623
60. Xue, N. H., Xue, N. C., Cheng, N. B., Yu, N. Y., & Wang, N. Q. (2010b). High-Saturation-Power and High-Speed Ge-on-SOI p-i-n Photodetectors. IEEE Electron Device Letters, 31(7), 701–703. https://doi.org/10.1109/led.2010.2048997
61. Finetti, M., Guerri, S., Negrini, P., Scorzoni, A., & Suni, I. (1985). Contact resistivity of silicon/silicide structures formed by thin film reactions. Thin Solid Films, 130(1–2), 37–45. https://doi.org/10.1016/0040-6090(85)90294-9
62. Podraza, N., Ferreira, G., Albert, M., Chen, N. C., Wronski, C., & Collins, R. (n.d.). Real time spectroscopic ellipsometry of thin film Si/sub 1-x/Ge/sub x/:H: phase diagrams for optimization in photovoltaics applications. In Conference Record of the IEEE Photovoltaic Specialists Conference. https://doi.org/10.1109/pvsc.2005.1488400
63. Yang, Y., Won, T. K., Choi, S. Y., Takehara, T., Nishimura, Y., & White, J. (2007). The Latest Plasma-Enhanced Chemical-Vapor Deposition Technology for Large-Size Processing. Journal of Display Technology, 3(4), 386–391. https://doi.org/10.1109/jdt.2007.900912
64. Huang, M., Li, S., Cai, P., Hou, G., Su, T., Chen, W., Hong, C., & Pan, D. (2018). Germanium on Silicon Avalanche Photodiode. IEEE Journal of Selected Topics in Quantum Electronics, 24(2), 1–11. https://doi.org/10.1109/jstqe.2017.2749958
65. Shim, J., Kang, D. H., Yoo, G., Hong, S. T., Jung, W. S., Kuh, B. J., Lee, B., Shin, D., Ha, K., Kim, G. S., Yu, H., Baek, J., & Park, J. H. (2014). Germanium p-i-n avalanche photodetector fabricated by point defect healing process. Optics Letters, 39(14), 4204. https://doi.org/10.1364/ol.39.004204
66. Tseng, C., Chen, K., Chen, W., Lee, M. M., & Na, N. (2014). A High-Speed and Low-Breakdown-Voltage Silicon Avalanche Photodetector. IEEE Photonics Technology Letters, 26(6), 591–594. https://doi.org/10.1109/lpt.2014.2300853
67. Liu, Y., Lin, C., Chen, P., Tsao, C., Lin, C., Wu, T., Wang, L., & Na, N. (2024). Normal-Incidence Germanium Photodetectors Integrated with Polymer Microlenses for Optical Fiber Communication Applications. Sensors, 24(13), 4221. https://doi.org/10.3390/s24134221