簡易檢索 / 詳目顯示

研究生: 盧佳卉
Chia Hui Lu
論文名稱: 高頻材料介電常數量測
Investigation on Complex Permittivity of Dielectric Material at Ka-band
指導教授: 朱國瑞
Kwo Ray Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 51
中文關鍵詞: 介電常數微波量測
外文關鍵詞: complex permittivity, microwave
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文以兩種理論計算、數值模擬以及實驗方法應用於矩形微波共振腔來量測材料之複數介電常數。這兩種方法包括微擾法以及腔體法。實驗上是利用HP8510網路分析儀量測處於TE101 及TE102模時,空腔及放有樣本之腔體其共振頻率以及品質因子。實驗以Teflon為樣本,且使用Ka微波頻帶。腔體法量測結果與模擬數值實部誤差約為1.9%, tan□誤差約為34%。腔體微擾法量測的結果與大部分已知文獻結果都極為接近。


    The theoretical calculation, simulation, and two experimental methods using microwave rectangular cavity are shown in this thesis for measuring the complex permittivity of dielectrics. The two experimental methods are perturbation and cavity methods. The measurements of resonant frequency and Q-factor were conducted in empty and loaded rectangular metallic cavities with TE101 and TE102 modes using HP8510 network analyzer. Teflon was used to verify simulation data at Ka-band. The deviations between simulation and experimental results using cavity method are 1.9% and 34% for real part and tan□ of complex permittivity, respectively. The experimental results using perturbation method were almost the same as that reported in many previous articles.

    目錄 第一章 簡介 1 1.1 概述 1 1.1.1 材料的介電性質 1 1.1.2 介電常數的量測 3 1.1.3 品質因子Q 5 1.1.3.1 Q值的定義 5 1.1.3.2 實驗上Q值的量測與計算 7 1.2 研究動機 9 第二章 理論計算 10 2.1 腔體法 10 2.1.1 簡介 10 2.1.2 腔體法基本理論 10 2.1.3 腔體法公式推導 12 2.2 腔體微擾法 14 2.2.1 簡介 14 2.2.2 複數角頻率與實數頻率及品質因子之間的關係 15 2.2.3 腔體微擾法基本理論 16 2.2.4 在介電樣本中的場 18 2.2.5 腔體微擾法公式推導 19 2.2.5.1 樣本置於腔體側面 20 2.2.5.2 樣本置於腔體底面 21 2.3 介電常數計算步驟 21 2.3.1 腔體法 21 2.3.2 腔體微擾法 22 第三章 模擬結果與討論 23 3.1 腔體法 24 3.2 腔體微擾法 26 第四章 實驗結果與討論 29 4.1 腔體法 31 4.2 腔體微擾法 33 第五章 結論 39 附錄 40 Appendix A 材料填滿空腔側部之關係式推導 40 Appendix B 標準矩形波導管參數 47 參考文獻 48

    [1] William D. Callister, Jr., Materials Science And Engineering An Introduction. New York: John Willey & Son.
    [2] Standard Test Method D-2520-81, “Complex permittivity of solid electrical insulating materials at microwave frequencies and temperatures to 1650□C,” Amer. Soc for Testing and Materials, Philadelphia. PA
    [3] Andrzej W. Kraszewski, Stuart O. Nelson, “Observation on Resonant Cavity Perturbation by Dielectric Objects,” IEEE Trans. Microwave Theory Tech., vol. 40, (1), pp. 151-155, Jan. 1992.
    [4] Binshen Meng, John Booske, and Reid Cooper, “Extended Cavity Perturbation Technique to Determine the Complex Permittivity of Dielectric Materials,” IEEE Trans. Microwave Theory Tech., vol. MTT-43, pp.2633-2635, 1995.
    [5] Gholamreza Moradi, Ayaz Ghorbani, “Accurate Measurement of Dielectric Porperties of Materials,” IEEE Int. Conf. Microwave and Millimeter Wave Technology Proceedings, 2002, pp.130-133.
    [6] A. M. Nicolson, and G. F. Ross, “Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques,” IEEE Trans. Instrum. Meas., vol. IM-19, pp.377-382, Nov. 1970.
    [7] Kamal Sarabandi, and Fawwaz T. Ulaby, “Technique for Measuring the Dielectric Constant of Thin Materials,” IEEE Trans. Instrum. Meas., vol. 37, pp. 631-636, Dec. 1988.
    [8] Deepak K. Ghodgaonkar, Vasundara V. Varadan, and Vijay K. Varadan, “A Free-Space Method for Measurement of Dielectric Constants and Loss Tangents at Microwave Frequencies,” IEEE Trans. Instrum. Meas., vol. 37, pp. 789-793, Dec. 1989.
    [9] D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “Free-Space Measurement of Complex Permittivity and Complex Permeability of Magnetic Materials at Microwave Frequencies,” IEEE Trans. Instrum. Meas., vol. 39, pp. 387-394, Apr. 1990.
    [10] James Baker-Jarvis, Eric J. Vanzura, and William A. Kissick, “Improved Technique for Determining Complex Permittivity with Transmission/Reflection Method,” IEEE Trans. Microwave Theory Tech., vol. MTT-38, pp.1096-1103, Aug. 1990.
    [11] H. Huang, C. E. Free, K. E. G. Pitt, A. R. Berzins, and G. P. Shorthouse, “Relative Permittivity Measurement of Thick-Film Dielectrics at Microwave Frequencies,” Electronics Letters, vol.31, pp.1812-1814, Oct, 1995.
    [12] Richard D. Holling, K. A. Jose, Anilkumar Tellakula, V. V. Varadan, and V. K. Varadan, “Microwave Characterization of Dielectric Materials from 8 to 110 GHz Using A Free-Space Setup,” Microwave and Optical Tech. Letters, vol.26, pp.100-105, July, 2000.
    [13] S. Biju Kumar, U. Raveendranath, P. Mohanan, K. T. Mathew, M. Hajian, and L. P. Ligthart, “A Simple Free-Space Method for Measuring the Complex Permittivity of Single and Compound Dielectric Materials,” Microwave and Optical Tech. Letters, vol.26, pp.117-119, July, 2000.
    [14] Tsenchieh Chiu, “Dielectric Constant Measurement Technique for a Dielectric Strip Using a Rectangular Waveguide,” IEEE Trans. Instrum. Meas., vol. 52, pp. 1501-1508, Oct. 2003.
    [15] N. Gagnon, J. Shaker, L. Roy, A. Petosa, and P. Berini, “Low-Cost Free-Space Measurement of Dielectric Constant at Ka Band ,” IEE Proc.-Microw. Antennas Propag., vol.151, pp.271-276, June, 2004.
    [16] Devendra Misra, “On the Measurement of the Complex Permittivity of Materials by an Open-Ended Coaxial Probe.” IEEE Microw. And Guided Wave Letters, vol.5, May, 1995.
    [17] Fred I. Shimabukuro, and C. Yeh, “Attenuation Measurement of Very Low Loss Dielectric Waveguides by Cavity Resonator Method Applicable in the Millimeter/Submillimeter Wavelength Range,” IEEE Trans. Microwave Theory Tech., vol. MTT-36, pp.1160-1166, July, 1988.
    [18] Ahmet Baysar, and James L. Kuester, “Dielectric Property Measurements of Materials Using the Cavity Technique,” IEEE Trans. Microwave Theory Tech., vol. MTT-40, pp.2108-2110, 1992.
    [19] Prasad K. Kadaba, “Simultaneous Measurement of Complex Permittivity and Permeability in Millimeter Region by a Frequency-Domain Technique,” IEEE Trans. Instrum. Meas., vol. IM-33, pp.336-340, Dec. 1984.
    [20] Mohammed Nurul Afsar, and Hanti Ding, “A Novel Open-Resonator System for Precise Measurement of Permittivity and Loss-Tangent,” IEEE Trans. Instrum. Meas., vol. IM-50, pp.402-405, April. 2001.
    [21] M. Sucher, “Dielectric Constants,” in Handbook of Microwave Measurements, M. Sucher and J. Fox, Eds., 3nd ed., vol.2, Brooklyn, N.Y.: Polytechnic Press, Chap. 9, 1963.
    [22] R. F. Harrington, Time-Harmonic Electromagnetic Fields. New York: McGraw-Hill, 1961.
    [23] Authur R. Von Hippel, Dielectric Materials and Applications. Authur R. Von Hippel Eds., New York: The Technology Press of M.I.T. and John Willey & Son, 1961.
    [24] Edward L. Ginzton, Microwave Measurements.
    [25] HFSS User’s Guide – High Frequency Structure Simulator, Electronic Design Automation Software.
    [26] Bratislav Milovanovic, Sladjana Ivkovic, Visa Tasic, “A Simple Method for Permittivity Measuring using Microwave Resonant Cavity,”.
    [27] R. E. Collin, Foundations for Microwave Engineering. 2nd ed., McGraw-Hill.
    [28] D. M. Pozar, Microwave Engineering. 2nd ed., John Willey & Son.
    [29] J. D. Jackson, Classical Electrodynamics. 3nd ed., John Willey & Son.
    [30] K. R. Chu, “微波物理與應用”講義, 清大物理系.
    [31] K. R. Chu, “Time Domain Analysis of Open Cavities,”講義, 清大物理系.
    [32] Edward L. Ginzton, Microwave Measurements, New York: McGraw-Hill, 1975.
    [33] Werner Rueggeberg, “Determination of Complex Permittivity of Arbitrarily Dimensioned Dielectric Modules at Microwave Frequencies,” IEEE Trans. Microwave Theo. Tech., vol. MTT-19, No. 6, June, 1971.
    [34] William B. Weir, “Automatic Measurement of Complex Dielectric Constant and Permeability at Microwave Frequencies,” Proceeding of the IEEE, vol. 62, No. 1, Jan. 1974.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE