簡易檢索 / 詳目顯示

研究生: 王義生
Wang, I-Sheng
論文名稱: 具有Fischer碳炔與異腈基的低價數金屬化合物合成
Facile Synthesis of Low-Valent Transition Metal Complexes Containing the Fischer-Type Carbyne and Isocyanide Ligands
指導教授: 蔡易州
Tsai, Yi-Chou
口試委員: 鄭建鴻
Cheng, Chien-Hong
劉學儒
Liu, Hsueh-Ju
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 107
中文關鍵詞: 金屬碳炔反三明治異腈基低價數
外文關鍵詞: Fischer Carbyne, Inverted-Sandwich, Isocyanide, Low-Valent
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗室以β-二酮亞胺為配基合成出具有低配位且低價數之雙鉻、雙釩反三明治錯合物(μ-η6:η6-C7H8¬)[M(Nacnac)]2 (M = Cr (1), V (2))。將錯合物1與1當量的N‒氧化吡啶進行反應可得到具有一個架橋形式的氧原子的雙核鉻金屬錯合物[(NacnacCr)2(μ-O)] (3);另外我們將錯合物1分別與三甲基氰矽烷與二甲基第三丁基氰矽烷進行反應,則可分別得到具有碳炔基的鉻二價錯合物[(Nacnac)Cr(CN(SiMe3)2)(CNSiMe3)2] (4)與五配位的鉻一價錯合物[NacnacCr(CNSitBuMe2)3] (5);若將錯合物1與異硫氰酸三甲基矽酯進行反應,則可以得到具有兩個架橋形式的硫氰酸根的雙核鉻金屬錯合物[NacnacCr(μ-κ1:κ1-NCS)]2 (6)。此外,我們也嘗試將錯合物2分別與三甲基氰矽烷和二甲基第三丁基氰矽烷進行反應,得到與4相同的釩二價金屬碳炔錯合物[(Nacnac)V(CN(SiMe3)2)(CNSiMe3)2] (7)和保留反三明治構形的釩一價錯合物(μ-η6:η6-C7H8¬)[V(Nacnac)(CNSitBuMe2)]2 (8)。
    另外我們根據文獻合成出後過渡金屬的雙鈷和雙鎳反三明治錯合物(μ-η2: η2-C7H8)[Co(Nacnac)]2 (9)、((Nacnac)Ni)2(μ-η3:η3-C6H5Me) (10)。我們將錯合物9與三甲基氰矽烷與二甲基第三丁基氰矽烷進行反應,結果獲得同為16電子的平面型四配位的鈷一價錯合物[(Nacnac)Co(CNSiMe3)2] (11)和[(Nacnac)Co(CNSitBuMe2)2] (12);另外我們將11與異硫氰酸三甲基矽酯進行反應,得到一個直線型且具有一個架橋形式的硫原子的雙核鈷二價的金屬錯合物[(NacnacCo)2(μ-S)] (13)。同樣地,我們將錯合物12與三甲基氰矽烷或二甲基第三丁基氰矽烷進行反應,結果也得到具有相同的T形構形的三配位錯合物[(NacnacNi)(NCSiMe3)] (14)和[(NacnacNi)(NCSitBuMe2)] (15)。最後我們將錯合物14進行氧化,與氧化劑三氟甲磺酸銀和三甲基氰矽烷進行反應,可以得到四配位的鎳二價金屬錯合物[(NacnacNi)(κ2-OTf)] (16)和[(NacnacNi)(NCSiMe3)(CN)] (17)。


    We reported the preparation of low-coordinate, uni-valent inverted sandwich dinuclear complexes of chromium and vanadium (μ-η6:η6-C7H8)[M(Nacnac)]2 (M = Cr (1), V (2)) stabilized by the sterically demanding β-diketiminate ligand. Treatment of 1 with one equivalent of pyridine N-oxide produced the unique dimeric chromium oxide compound [(NacnacCr)2(μ-O)] (3) with one bridging oxygen between two chromium atoms. Reaction of 1 with trimethylsilyl cyanide and tert-butyldimethylsilyl cyanide resulted in the formation of [(Nacnac)Cr(CN(SiMe3)2)(CNSiMe3)2] (4) and [NacnacCr(CNSitBuMe2)3] (5) , respectively. Complex 4 features a Fischer type carbine and two isocyanide ligands, while 5 contains three isocyanide ligands in addition to β-diketiminate groups. Treatment of 1 with two equivalents (trimethylsilyl)isothiocyanate generated the dimeric [(Nacnac)Cr(μ-κ1:κ1-NCS)]2 (6) having an eight-membered Cr2(NCS)2 ring configuration with two bridging NCS‒ group across the dichromium moiety. Interestingly, we prepared a rare example of vanadium complex [(Nacnac)V(CN(SiMe3)2)(CNSiMe3)2] (7) with a Fischer type carbyne ligand, which is isostructural with 4. In addition, treatment of 2 with tert-butyldimethylsilyl cyanide afforded (μ-η6:η6-C7H8¬)[V(Nacnac)(CNSitBuMe2)]2 (8) featuring an inverted-sandwich conformation.
    In order to compare the difference between the early and late transition metals, we explored inverted sandwich dicobalt and dinickel complexes, (μ-η2:η2-C7H8)[Co(Nacnac)]2 (9), ((Nacnac)Ni)2(μ-η3:η3-C6H5Me) (10). Addition of trimethylsilyl cyanide and tert-butyldimethylsilyl cyanide to 9 afforded [(Nacnac)Co(CNSiMe3)2] (11) and [(Nacnac)Co(CNSitBuMe2)2] (12), respectively. Both 11 and 12 are 16-electron species with a four-coordinate square planar geometry. Besides, the reaction of 9 with (trimethylsilyl)isothiocyanate led to a C-S bond cleavage and generated a dicobalt complex [(NacnacCo)2(μ-S)] (13) with one sulfur atom bridging two cobalt centers. As in the conversion of 9 to 11 and 12, the reaction of 10 with trimethylsilyl cyanide and tert-butyldimethylsilyl cyanide afforded [(NacnacNi)(NCSi(CH3)3)] (14) and [(NacnacNi)(NCSitBuMe2)] (15), respectively. 14 and 15 display a T-shape conformation due to the SOMO of the NiI metal center. Upon oxidation by AgOTf and TMSCN, 14 was transformed into two NiII complexes with a square planar geometry, [(NacnacNi)(κ2-OTf)] (16) and[(NacnacNi)(NCSiMe3)(CN)] (17), respectively.

    摘要..........I Abstract......III 謝誌..........V 目錄..........VI 圖目錄........IX 流程圖目錄....XI 表目錄........XII 第一章 緒論.....1 1-1. 反三明治錯合物.....1 1-2. 反三明治錯合物與小分子的活化.....4 1-3. β-二酮亞胺配基.....6 1-4. 三甲基氰矽烷.....9 1-5. 研究方向.....12 第二章 反三明治雙鉻、雙釩錯合物之反應性研究.....13 2-1 前言.....13 2-2 反三明治雙鉻、雙釩錯合物之反應性討論.....15 2-2-1 錯合物[(NacnacCr)2(μ-O)] (3)的合成與鑑定.....15 2-2-2 錯合物[(Nacnac)Cr(CN(SiMe3)2)(CNSiMe3)2] (4)的合成與鑑定.....17 2-2-3 錯合物[NacnacCr(CNSitBuMe2)3] (5)的合成與鑑定.....21 2-2-4 錯合物[NacnacCr(μ-κ1:κ1-NCS)]2 (6)的合成與鑑定.....25 2-2-5 錯合物[(Nacnac)V(CN(SiMe3)2)(CNSiMe3)2] (7)的合成與鑑定.....28 2-2-6.錯合物(μ-η6:η6-C7H8)[V(Nacnac)(CNSitBuMe2)]2 (8)的合成與鑑定.....31 2-3. 結論.....35 第三章 反三明治雙鈷、雙鎳錯合物之反應性研究.....38 3-1 前言.....38 3-2. 反三明治雙鈷、雙鎳錯合物之反應性討論.....41 3-2-1錯合物[(Nacnac)Co(CNSiMe3)2] (11)的合成與鑑定.....41 3-2-2錯合物[(Nacnac)Co(CNSitBuMe2)2] (12)的合成與鑑定.....44 3-2-3 錯合物[(NacnacCo)2(μ-S)] (13)的合成與鑑定.....46 3-2-4 錯合物[(NacnacNi)(NCSiMe3)] (14)的合成與鑑定.....48 3-2-5 錯合物[(NacnacNi)(NCSitBuMe2)] (15)的合成與鑑定.....51 3-2-6 錯合物[(NacnacNi)(κ2-OTf)] (16)的合成與鑑定.....53 3-2-7 錯合物[(NacnacNi)(NCSiMe3)(CN)] (17)的合成與鑑定.....55 3-3.結論.....58 第四章 實驗儀器、實驗步驟與晶體資料.....61 4-1實驗儀器與溶劑.....61 4-1-1 一般操作.....61 4-1-2 實驗使用儀器.....61 4-1-3實驗藥品與溶劑.....62 4-2 實驗步驟.....63 4-2-1 [(NacnacCr)2(μ-O)] (3)的合成.....63 4-2-2 [(Nacnac)Cr(CN(SiMe3)2)(CNSiMe3)2] (4)的合成.....65 4-2-3 [NacnacCr(CNSitBuMe2)3] (5)的合成.....68 4-2-4 [NacnacCr(μ-κ1:κ1-NCS)]2 (6)的合成.....70 4-2-5 [(Nacnac)V(CN(SiMe3)2)(CNSiMe3)2] (7)的合成.....72 4-2-6 (μ-η6:η6-C7H8)[V(Nacnac)(CNSitBuMe2)]2 (8)的合成.....74 4-2-7[(Nacnac)Co(CNSiMe3)2] (11)的合成.....75 4-2-8 [(Nacnac)Co(CNSitBuMe2)2] (12)的合成.....78 4-2-9 [(NacnacCo)2(μ-S)] (13)的合成.....81 4-2-10 [(NacnacNi)(NCSiMe3)] (14)的合成.....83 4-2-11 [(NacnacNi)(NCSitBuMe2)] (15)的合成.....85 4-2-12 [(NacnacNi)(κ2-OTf)] (16)的合成.....86 4-2-13[(NacnacNi)(NCSiMe3)(CN)] (17)的合成.....88 4-3晶體結構資料表.....91 4-3-1 錯合物[(NacnacCr)2(μ-O)] (3)之晶體資料.....91 4-3-2 錯合物[(Nacnac)Cr(CN(SiMe3)2)(CNSiMe3)2] (4)之晶體資料.....92 4-3-3 錯合物[NacnacCr(CNSitBuMe2)3] (5)之晶體資料.....93 4-3-4 錯合物[NacnacCr(μ-κ1:κ1-NCS)]2 (6)之晶體資料.....94 4-3-5 錯合物[(Nacnac)V(CN(SiMe3)2)(CNSiMe3)2] (7)之晶體資料.....95 4-3-6 錯合物(μ-η6:η6-C7H8)[V(Nacnac)(CNSitBuMe2)]2 (8)之晶體資料.....96 4-3-7 錯合物[(Nacnac)Co(CNSiMe3)2] (11)之晶體資料.....97 4-3-8 錯合物[(Nacnac)Co(CNSitBuMe2)2] (12)之晶體資料.....98 4-3-9 錯合物[(NacnacCo)2(μ-S)] (13)之晶體資料.....99 4-3-10 錯合物[(NacnacNi)(NCSiMe3)] (14)之晶體資料.....100 4-3-11 錯合物[(NacnacNi)(NCSitBuMe2)] (15)之晶體資料.....101 4-3-12 錯合物[(NacnacNi)(κ2-OTf)] (16)之晶體資料.....102 4-3-13 錯合物[(NacnacNi)(NCSiMe3)(CN)] (17)之晶體資料.....103 參考文獻.....104

    1. Dunutz, J. D.; Orgel, L. E.; Rich, A. Acta Cryst. 1956, 9, 373‒375.
    2. Pauson, P. L. J. Organomet. Chem. 2001, 637, 3‒6.
    3. Larik, F. A.; Saeed, A.; Fattah, T. A.; Muqadar, U.; Channar, P. A. Appl. Organometal. Chem. 2017, 31, e3664.
    4. Dwadnia, N.; Roger, J.; Pirio, N.; Cattery, H.; Hierso, J. –C. Coord. Chem. Rev. 2018, 355, 74‒100.
    5. Gao, D. –W.; Gu, Q.; Zheng, C.; You, S. –L. Acc. Chem. Res. 2017, 50, 351‒365.
    6. Zhu, J. –C.; Cui, D. –X.; Li, Y. –D.; Jiang, R.; Chen, W. –P.; Wang, P. –A. ChemCatChem. 2018, 10, 907‒919.
    7. Patra, M.; Gasser, G. Nature Reviews Chemistry. 2017, 1, 0066.
    8. Kaur, S.; Kaur, M.; Kaur, P.; Clays, K.; Singh, K. Coord. Chem. Rev. 2017, 343, 185‒219.
    9. Ornelas, C. New J. Chem. 2011, 35, 1973‒1985.
    10. Amer, W. A.; Wang, L.; Amin, A. M. J. Inorg. Organomet. Polym. 2010, 20, 605‒615.
    11. Duff, A. W.; Jonas, K.; Goddard, R.; Kraus, H. –H.; Krüger, C. J. Am. Chem. Soc. 1983, 105, 5480‒5481.
    12. Tsai, Y. C.; Wang, P, Y.; Chen, S. A.; Chen, J. M. J. Am. Chem. Soc. 2007, 129, 8066‒8067.
    13. Tsai, Y.-C.; Wang, P.-Y.; Lin, K.-M.; Chen, S.-A.; Chen, J.-M. Chem. Commun. 2008, 205‒207.
    14. Gianetti, T. L.; Nocton, G.; Minasian, S. G.; Tomson, N. C.; Kilcoyne, A. L. D.; Kozimor, S. A.; Shuh, D. K.; Tyliszczak, T.; Bergman, R. G.; Arnold, J. J. Am. Chem. Soc. 2013, 135, 3224‒3236.
    15. Patel, D.; Moro, F.; McMaster, J.; Lewis, W.; Blake, A. J.; Liddle, S. T. Angew. Chem. Int. Ed. 2011, 50, 10388‒10392.
    16. Monreal, M. J.; Khan, S. I.; Kiplinger, J. L.; Diaconescu, P. L. Chem. Commun. 2011, 47, 9119‒9121.
    17. Huang, W.; Khan, S. I;. Diaconescu, P. L. J. Am. Chem. Soc. 2011, 133, 10410‒10413.
    18. Ni, C.; Ellis, B. D.; Fettinger, J. C.; Long, G. J.; Power, P. P. Chem. Commun. 2008, 1014‒1016.
    19. Diaconescu, P. L.; Cummins, C. C. J. Am. Chem. Soc. 2002, 124, 7660‒7661.
    20. Diaconescu, P. L.; Arnold, P. L.; Baker, T. A.; Mindiola, D. J.; Cummins, C. C. J. Am. Chem. Soc. 2000, 122, 6108‒6109.
    21. Bai, G.; Wei, P; Stephan, D. W. Organometallics 2005, 24, 5901‒5908.
    22. 王柏楊, 國立清華大學化學研究所碩士論文. 2007.
    23. Mcgeachin, S. G. Can. J. Chem. 1968, 46, 1903‒1912.
    24. Hein, N. M.; Suzuki, T.; Ogawa, T.; Fryzuk, M. D. Dalton Trans, 2016, 45, 14697‒14708.
    25. Ponikiewski, Ł.; Ziółkowska, A.; Pikies, J. Inorg. Chem. 2017, 56, 1094‒1103.
    26. Klementyeva, S. V.; Petrov, P. A.; Starikova, A. A.; Konchenko, S. N. ChemistrySelect, 2018, 3, 1262‒1267.
    27. Boutland, A. J.; Carroll, A.; Lamsfus, C. A.; Stasch, A.; Maron, L.; Jones, C. J. Am. Chem. Soc. 2017, 139, 18190‒18193.
    28. Panda, C.; Chandra, A.; Corona, T.; Andris, E.; Pandey, B.; Garai, S.; Lindenmaier, N.; Künstner, S.; Farquhar, E. R.; Roithová, J. Rajaraman, G.; Driess, M.; Ray, K. Angew. Chem. Int. Ed. 2018, 57, 14883‒14887.
    29. Do, D. C. H.; Protchenko, A. V.; Fuentes, M. Á.; Hicks, J.; Kolychev, E. L.; Vasko, P.; Aldridge, S. Angew. Chem. Int. Ed. 2018, 57, 13907‒13911.
    30. Caise, A.; Kolychev, E. L.; Hicks, J.; Fuentes, M. Á.; Goicoechea, J. M.; Aldridge, S. Dalton Trans. 2019, DOI: 10.1039/c9dt00535h.
    31. Mironova, O. A.; Sukhikh, T. S.; Konchenko, S. N.; Pushkarevsky, N. A. Polyhedron, 2019, 159, 337‒344.
    32. Panda, S.; Bera, S. K.; Lahiri, G. K. Polyhedron, 2019. doi: https://doi.org/10.1016/j.poly. 2019.02.052.
    33. (a) Hitchcock, P. B.; Lappert, M. F.; Liu, D.-S. J. Chem. Soc., Chem. Commun. 1994, 1699‒1700; (b) Hitchcock, P. B.; Lappert, M. F.; Liu, D.-S. J. Chem. Soc., Chem. Commun. 1994, 2637‒2638.; (c) Hohloch, S.; Kriegel, B. M.; Bergman, R. G.; Arnold, John. Dalton Trans. 2016, 45, 15725‒15745.
    34. Carrera, N.; Savjani, N.; Simpson, J.; Hughes, D. L.; Bochmann, M. Dalton Trans, 2011, 40, 1016‒1019.
    35. Ferro, L.; Coles, M. P.; Day, I. J.; Fulton, J. R. Organometallics 2010, 29, 2911‒2915.
    36. Doyle, D. L.; Hitchcock, P. B.; Lappert, M. F.; Li, G. Organomet. Chem. 2009, 694, 2611‒2617.
    37. Kakaliou, L.; Qian, B.; Baek, S. W.; Smith, M. R.; Motry, D. H. Inorg. Chem. 1999, 38, 5964‒5977.
    38. Wright, R. J.; Power, P. P.; Scott, B. L.; Kiplinger, J. L. Organometallics 2004, 23, 4801‒4803.
    39. Tian, X.; Goddard, R.; Pörschke, K. –R. Organometallics 2005, 24, 6250‒6259.
    40. Bernskoetter, W. H.; Lobkovsky, A. E.; Chirik, P. J. Organometallics 2005, 24, 6250‒6259.
    41. Dugan, T. R.; Sun, X.; Rybak-Akimova, E. V.; Olatunji-Ojo, O.; Cundari, T. R.; Holland, P. L. J. Am. Chem. Soc. 2011, 133, 12418‒12421.
    42. Yoshida, J. I.; Itoh, M.; Moruta, Y.; Isoe, S. J. Chem. Soc., Chem. Commum. 1994, 549‒551.
    43. Zhu, C.; Xia, J. –B.; Chen, C. Org. Lett. 2014, 16, 247–249.
    44. Fritz, S.; Ehm, C.; Lentz, D. Inorg. Chem. 2015, 54, 5220–5231.
    45. Wang, J. J.; Wang, J. J.; Shen, L. Y.; Zhao, Y. X.; Wu, B.; Yang, X. J. Organometallics 2019, 38, 2674–2682.
    46. Wang, F. H.; Wei, Y.; Wang, S. W.; Zhu, X. C.; Zhou, S. L.; Yang, G. S.; Gu, X. X.; Zhang, G. C.; Mu, X. L. Organometallics 2015, 34, 86–93.
    47. Takeuchi, K.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2008, 130, 16848–16849.
    48. 黃昱翔, 國立清華大學化學研究所碩士論文. 2017.
    49. 錡瀚翔, 國立清華大學化學研究所碩士論文. 2017.
    50. 陳映竺, 國立清華大學化學研究所碩士論文. 2018.
    51. Dai, F.; Yap, G. P. A.; Theopold, K. H. J. Am. Chem. Soc. 2013, 135, 16774–16776.
    52. Monillas, W. H.; Yap, G. P.; MacAdams, L. A.; Theopold, K. H. J. Am. Chem. Soc. 2007, 129, 8090–8091.
    53. Mayr, A.; Hoffmeister, H. Adv. Organomet. Chem. 1991, 32, 227–324.
    54. Huttner, G.; Lorenz, H.; Gartzke, W. Angew. Chem. Int. Ed. 1974, 13, 609–611.
    55. 林義登, 國立清華大學化學研究所碩士論文. 2014.
    56. Cordiner, R. L.; Hill, A. F.; Wagler, J. Organometallics 2008, 27, 4532–4540.
    57. Lipkowski, J. Transition Met. Chem. 1978, 3, 117–121.
    58. La Pierre, H. S.; Arnold, J.; Bergman, R. G.; Toste, F. D. Inorg. Chem. 2012, v, 13334–13344.
    59. Buijink, J. K. F.; Meetsma, A.; Teuben, J. H. Organometallic 1993, 12, 2004–2005.
    60. Protasiewicz, J. D.; Lippard, S. J. J. Am. Chem. Soc. 1991, 113, 6564–6570.
    61. 張凱傑, 國立清華大學化學研究所碩士論文. 2008.
    62. Yao, S.; Driess, M. Acc. Chem. Res. 2012, 45, 276–287.
    63. Lagaditis, P. O.; Schluschaß, B.; Demeshko, S.; Würtele, C.; Schneider, S. Inorg. Chem. 2016, 55, 4529–4536.
    64. Mautz, J.; Huttner, G. Eur. J. Inorg. Chem. 2008, 1423–1434.
    65. Pleus, R. J.; Waden, H.; Saak, W.; Haase, D.; Pohl, S. Dalton, Trans. 1999, 2601–2610.
    66. Eckert, N. A.; Dinescu, A.; Cundari, T. R.; Holland, P. L. Inorg. Chem. 2005, 44, 7702–7704.
    67. Shiren, K.; Ogo, S.; Fujinami, S.; Hayashi, H.; Suzuki, M.; Uehare, A.; Watanabe, Y.; Moro-oka, Y. J. Am. Chem. Soc. 2000, 122, 254–262.
    68. Köthe, C.; Metzinger, R.; Limberg, C. Eur. J. Inorg. Chem. 2013, 3937–3942.
    69. Kundu, S.; Stieber, S. C. E.; Ferrier, M. G.; Kozimor, S. A.; Bertke, J. A.; Warren, T. H. Angew. Chem. Int. Ed. 2016, 55, 10321–10325.
    70. Lalancette, J. –M.; Rollin, G.; Dumas, P. Can. J. Chem. 1972, 50, 3058–3062.

    QR CODE