簡易檢索 / 詳目顯示

研究生: 葉芳君
Yeh, Fang Juyn
論文名稱: β-Ti-28Nb-11Ta-8Zr 合金之陽極氧化表面改質添加SrHA及其生物活性研究
Surface Modification and Bioactivity of β-Ti-28Nb-11Ta-8Zr Alloy Treated by Anodic Oxidation and SrHA loading
指導教授: 嚴大任
Yen, Ta Jen
口試委員: 王子威
Wang, Tzu Wei
王子康
Wang, Tze Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 81
中文關鍵詞: 陽極氧化二氧化鈦奈米管氫氧基磷灰石骨母細胞生物相 容性
外文關鍵詞: anodic oxidation, surface modification, Ti-Nb-Ta-Zr, hydroxyl apatite, Strontium, titanium nanotubes
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於良好的生物相容性、機械性質與抗腐蝕性,鈦金屬與鈦合金被廣泛應用於人工骨頭植入材料領域,然而大部份材料的楊氏模數值遠大於人骨,因而易導致遮蔽效應(stress-shielding effect)的發生。於本實驗裡,我們採用了本實驗室開發的新型的鈦合金β-type Ti-28Nb-11Ta-8Zr alloy (TNTZ) ,其擁有接近人骨的楊氏模數值以及良好的抗腐蝕性來作為研究材料。除了機械性質差異的問題外,為了提升材料的生物相容性以及抗細菌感染的能力,我們對材料進行表面改質以及添加化合物並做測試,期望開發出理想的骨頭植入材。
    首先我們採用陽極氧化法於鈦合金表面成長管狀奈米氧化層結構,奈米管狀結構能增強股母細胞於其表面的貼覆能力並且能做為承載添加化合物的載體;接下來我們用水熱法將金屬鍶以及氫氧基磷灰石合成於奈米管狀結構中:氫氧基磷灰石為人骨的組成主要成分,並且能做為促進骨母細胞成長的前驅物;而金屬鍶的添加除了其本身亦能刺激股母細胞生長外,是為了提升材料整體的抗菌能力。


    Due to the good biocompatibility, mechanical properties, corrosion resistance, Titanium and Ti-based alloys are widely applied in the orthopedic implants. However, there are still some problems of the Ti-based alloy implant, such as the elastic modulus of which (cp-Ti, ~105GPa; Ti64,~112GPa) are still far larger than that of real bone (4-40 GPa), which may easily causes stress-shielding effect and subsequently led to the failure of implant. We developed a β-type Ti-28Nb-11Ta-8Zr alloy (TNTZ) with low elastic modulus (49 GPa) as an osseo-compatible material in this study to avoid the problem. Which meets the bone-mimetic condition with improved biocompatibility and corrosion resistance in the environment of simulated body fluid, Hank’s solution. On the other hand, in order to mimic bone extracellular matrix (ECM), the nanotube structure to promote the cell interlocks was carried out by anodic oxidation (AO) with post heat treatment to get crystallization to manufacture crystallized nanotubular oxide layer on the surface. Furthermore, the as-prepared nanostructure oxides serve as a platform utilized to incorporate SrHA inside to devoid of infection during the surgery and assist in surgery and faster healing.
    Firstly, material characteristics of nanotube TNTZ oxide coating with SrHA were analyzed including surface morphologies by scanning electron microscopy (SEM) and chemical compositions by X-ray photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDS). Subsequently, X-ray diffraction (XRD) was used to confirm the crystalline of the nanotube TNTZ oxide structure. Thirdly, cell dehydration and MTT test were conduct to observe the morphology and adhesion of osteoblast on as-prepared NT-TNTZO/SrHA, and the cell proliferation. Finally, in-vitro antibacterial test were applied to observe the antibacterial efficiency.
    Experimental results indicated that the surface modification through anodic oxidation, diameters of the nanotubes will change with the different apply voltage. Here we applied bias under 50 volt, 60 minutes to grow the nanotube structure as a platform for SrHA (Strontium-hydroxyl apatite) loading to improve the bioability and antibacterial efficiency simultaneously. In the results of SEM image of cell morphology investigation and MTT assay, HA and SrHA-containing provide a more friendly surrounding for osteoblast cells to attach on, and the pseudopod of osteoblast cells can be clearly observed on the SrHA coating treated group. Besides, the enhancements of cell proliferation from crystallinity, SrHA-coating were also found. The final antibacterial tests, qualitative Kirby-Bauer test, inhibited zone observation, reveals that NT-TNTZO/ SrHA effectively inactivate E. coli. Quantitative test of antibacterial efficiency was presented by growth curve of E. coli. The efficiency at least reaches 4 days and 24h respectively in such a strict environment (high volume of bacteria solution).
    In our study we successfully developed crystal nanotube structure oxide layer loaded with SrHA (NT-TNTZO/SrHA). In the antibacterial test and the in-vitro tests shown that SrHA containing samples enhanced cell viability and antibacterial efficiency simultaneously.

    摘要 1 Abstract 2 Acknowledgements 5 Content 8 List of Figure 10 List of Table 12 Chapter 1 Background 13 Chapter 2 Literature Review 16 2.1 Introduction of Bone Tissue 16 2.2 Criteria of Bone Implant 19 2.2.1 Biocompatibility 19 2.2.2 Mechanical Properties 22 2.2.3 Corrosion and Wear Resistance 25 2.2.4 Osseointegration 27 2.3 Ti-based Alloy Implants and Properties of Surface Modification 28 2.3.1 Titanium Alloys 28 2.3.2 Surface Charge of Hydrated Titanium Dioxide 32 2.3.3 Corrosion Properties and Potentiodynamic Polarization Curve 33 2.3.4 Biological Properties 35 2.4 Titanium Dioxide Nanotubes 35 2.4.1 Nano tubular Surface Modification via Anodic Oxidation 36 2.4.2 Size Effect of Nanotube Diameter on Cell Culture 39 2.4.3 Nanotubes as Reservoir for Molecule Elution (Anti-infection Agents) 43 2.5 Bioactive Compound and Antibacterial agents 44 2.6 Motivation 47 Chapter 3 Experimental Procedures 48 3.1 Preparation of Ti-28Nb-11Ta-8Zr (TNTZ) Substrate 48 3.2 Fabrication of Nano tubular TNTZ Oxide Layers (NT-TNTZO) 48 3.3 Synthetic hydroxyl apatite (HA) deposition by AIM 50 3.4 Incorporation of SrHA by hydrothermal method 50 3.5 Material Characterizations of TNTZ and NT-TNTZO/SrHA 51 3.5.1 Scanning Electron Microscopy (SEM) 51 3.5.2 Energy Dispersive Spectrometer (EDS) 52 3.5.3 X-ray Photoelectron Spectroscopy (XPS) 52 3.5.4 X-ray Diffraction (XRD) 53 3.6 Electrochemical Analysis 54 3.7 In-vitro Cell Tests 55 3.7.1 Human Fetal Osteoblast (hFOB) Culture 55 3.7.2 MTT Assay (Cell Proliferation) 55 3.7.3 SEM image of cell mophology 56 3.8 Evaluation of Antimicrobial Efficiency 57 3.8.1 Bacteria Culture 57 3.8.2 Kirby-Bauer Test 57 3.8.3 Duration Assayof Antibacterial Ability 58 Chapter 4 Results and Discussion 59 4.1 Characteristics of TNTZ and Its Oxide Nanotubes 59 4.1.1 Morphological Observations 59 4.1.2 Crystallinity of NTTNTZO 61 4.2.1 Chemical composition 62 4.3 Water contact angle 65 4.4 Biocompatibility 66 4.4.1 hFOB Proliferation on TNTZ, NTTNTZO and NTTNTZO/ HA+Sr 66 4.4.2 SEM image of cell mophology 66 4.5 Antibacterial Efficacy 68 4.5.1 Inhibited Zone Observation 68 4.5.2 Growth Curve of Material-treated Bacteria 69 Chapter 5 Conclusion 71 Reference 72

    [1] Angier N. Bone, a Masterpiece of Elastic Strength. The New York Times. 2010;4:25.
    [2] Saijo H, Chung U-i, Igawa K, Mori Y, Chikazu D, Iino M, et al. Clinical application of artificial bone in the maxillofacial region. Journal of Artificial Organs. 2008;11:171-6.
    [3] T Miyata TA, M Furuse. Artificial bone. US Patent 4,314,380. 1982.
    [4] Goldenfein J. Injectable artificial bone developed. Medical Futures Innovation Award. 2008.
    [5] Vunjak-Novakovic G. Jaw bone created from stem cells. BBC NEWS. 2009.
    [6] Marcacci M. Turning wood into bones. BBC NEWS. 2010.
    [7] Alvarez K, Nakajima H. Metallic Scaffolds for Bone Regeneration. Materials. 2009;2:790-832.
    [8] Waston RARaML. Collagen-crytsal relationship in bone as seen in the electron microscope. The Anatomical Record. 1953;114:383-92.
    [9] Hayes WC. Biomechanics of cortical and trabecular bone: implication for assessment of fracture risk. New York: Raven Press. 1991.
    [10] Gibson LJ. Cancellous bone. New York: Pergamon Press. 1988.
    [11] Fisher DA, Watts M, Davis KE. Implant position in knee surgery - A comparison of minimally invasive, open unicompartmental and total knee arthroplasty. Journal of Arthroplasty. 2003;18:2-8.
    [12] Koeck FX, Beckmann J, Luring C, Rath B, Grifka J, Basad E. Evaluation of implant position and knee alignment after patient-specific unicompartmental knee arthroplasty. Knee. 2011;18:294-9.
    [13] Jun Y, Choi K. Design of patient-specific hip implants based on the 3D geometry of the human femur. Advances in Engineering Software. 2010;41:537-47.
    [14] Aparicio C, Padros A, Gil F-J. In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests. Journal of the Mechanical Behavior of Biomedical Materials. 2011;4:1672-82.
    [15] Branemark R, Emanuelsson L, Palmquist A, Thomsen P. Bone response to laser-induced micro- and nano-size titanium surface features. Nanomedicine-Nanotechnology Biology and Medicine. 2011;7:220-7.
    [16] H. Serhan MS, T. Albert and S.D. Kwak. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern? The Spine Journal. 2004;4:379-87.
    [17] A.R Vaccaro KS, R. Haid, S. Kitchel, P. Wuisman, W. Taylor, C. Branch and S. Garfin. The use of bioabsorbable implants in the spine. The Spine Journal. 2003;3:227-37.
    [18] Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29:2941-53.
    [19] Pinchuk L, Wilson GJ, Barry JJ, Schoephoerster RT, Parel J-M, Kennedy JP. Medical applications of poly(styrene-block-isobutylene-block-styrene) ("SIBS"). Biomaterials. 2008;29:448-60.
    [20] Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Medical Engineering & Physics. 1998;20:92-102.
    [21] Guo XE. Mechanical properties of cortical bone and cancellous tissue. In Bone Mechanics Handbook, 2nd edition. CRC Press. 2001.
    [22] Donald T. Reilly AHB, Victor H. Frankel. The elastic modulus for bone. Journal of Biomechanics. 1974;7:271-2.
    [23] Eckardt I, Hein HJ. Quantitative measurements of the mechanical properties of human bone tissues by scanning acoustic microscopy. Annals of Biomedical Engineering. 2001;29:1043-7.
    [24] Rho JY, Ashman RB, Turner CH. YOUNGS MODULUS OF TRABECULAR AND CORTICAL BONE MATERIAL - ULTRASONIC AND MICROTENSILE MEASUREMENTS. Journal of Biomechanics. 1993;26:111-9.
    [25] Ford CM, Keaveny TM. The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. Journal of Biomechanics. 1996;29:1309-17.
    [26] Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science. 2009;54:397-425.
    [27] Meijerink HJ, van Loon CJM, Malefijt MCdW, van Kampen A, Verdonschot N. A sliding stem in revision total knee arthroplasty provides stability and reduces stress shielding An RSA study using impaction bone grafting in synthetic femora. Acta Orthopaedica. 2010;81:337-43.
    [28] Engh CA, Young AM, Engh CA, Hopper RH. Clinical consequences of stress shielding after porous-coated total hip arthroplasty. Clinical Orthopaedics and Related Research. 2003:157-63.
    [29] Maeda E, Asanuma H, Noguchi H, Tohyama H, Yasuda K, Hayashi K. Effects of stress shielding and subsequent restressing on mechanical properties of regenerated and residual tissues in rabbit patellar tendon after resection of its central one-third. Journal of Biomechanics. 2009;42:1592-7.
    [30] H. Uchida HT, K. Nagashima, Y. Ohba, H. Matsumoto, Y. Toyama and K. Yasuda. Stress deprivation simultaneously induces over-expression of interleukin-lbeta, tumor necrosis factor-alpha, and transforming growth factor-beta in fibroblasts and mechanical deterioration of the tissue in the patellar tendone. Journal of Biomechanics. 2005;38:791-8.
    [31] Scholes SC, Unsworth A, Goldsmith AAJ. A frictional study of total hip joint replacements. Physics in Medicine and Biology. 2000;45:3721-35.
    [32] Herberts HMaP. Revision and re-revision rate n THR: a revision-risk study of 1,48,359 primary operations. Scientific exhibition presented at the 65th annual meeting of the American academy of orthopaedic surgeons, New Orleans, USA. 1998:19-23.
    [33] Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L. Large-sliding contact elements accurately predict levels of bone-implant micromotion relevant to osseointegration. Journal of Biomechanics. 2000;33:1611-8.
    [34] Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science & Engineering R-Reports. 2004;47:49-121.
    [35] Collings EW. The physical metallurgy of titanium alloys: ASM Series in Metal Processing. Edward Arnold Publications. 1984.
    [36] Long M, Rack HJ. Titanium alloys in total joint replacement - a materials science perspective. Biomaterials. 1998;19:1621-39.
    [37] Tang X, Ahmed T, Rack HJ. Phase transformations in Ti-Nb-Ta and Ti-Nb-Ta-Zr alloys. Journal of Materials Science. 2000;35:1805-11.
    [38] Niinomi M. Mechanical properties of biomedical titanium alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 1998;243:231-6.
    [39] K. Mishra JAD, R.A. Poggie, P. Kovacs and T.J. Fitzgerald. in Medical Application of Titanium and Its Alloys: the Material and Biological Issues. West Conshohocken, ASTM. 1996;1272:96-113.
    [40] Geetha M, Singh AK, Gogia AK, Asokamani R. Effect of thermomechanical processing on evolution of various phases in Ti-Nb-Zr alloys. Journal of Alloys and Compounds. 2004;384:131-44.
    [41] Wang K, Gustavson L, Dumbleton J. THE CHARACTERIZATION OF TI-12MO-6ZR-2FE - A NEW BIOCOMPATIBLE TITANIUM-ALLOY DEVELOPED FOR SURGICAL IMPLANTS1993.
    [42] Teoh SH. Fatigue of biomaterials: a review. International Journal of Fatigue. 2000;22:825-37.
    [43] Y. Song DSX, R. Yang, D. Li, W.T. Wu and Z.X. Guo. Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys. Materials Science and Engineering: A. 1999;260:269-74.
    [44] Li SJ, Yang R, Li S, Hao YL, Cui YY, Niinomi M, et al. Wear characteristics of Ti-Nb-Ta-Zr and Ti-6Al-4V alloys for biomedical applications. Wear. 2004;257:869-76.
    [45] Shibata T, Zhu YC. EFFECT OF FILM FORMATION CONDITIONS ON THE STRUCTURE AND COMPOSITION OF ANODIC OXIDE-FILMS ON TITANIUM. Corrosion Science. 1995;37:253-70.
    [46] Tyler PS, Kozlowski MR, Smyrl WH, Atanasoski RT. PHOTOELECTROCHEMICAL MICROSCOPY AS A PROBE OF LOCALIZED PROPERTIES OF THIN TIO2 FILMS. Journal of Electroanalytical Chemistry. 1987;237:295-302.
    [47] McAleer JF, Peter LM. PHOTOCURRENT SPECTROSCOPY OF ANODIC OXIDE-FILMS ON TITANIUM. Faraday Discussions. 1980;70:67-80.
    [48] Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys. Biomaterials. 2002;23:1995-2002.
    [49] Gurrappa I, Reddy DV. Characterisation of titanium alloy, IMI-834 for corrosion resistance under different environmental conditions. Journal of Alloys and Compounds. 2005;390:270-4.
    [50] Bamoulid L, Maurette MT, De Caro D, Guenbour A, Ben Bachir A, Aries L, et al. An efficient protection of stainless steel against corrosion: Combination of a conversion layer and titanium dioxide deposit. Surface & Coatings Technology. 2008;202:5020-6.
    [51] M. Textor CS, V. Frauchiger, S. Tosatti, D.M. Brunette. Titanium in Medicine: Properties and Biological Significance of
    Natural Oxide Films on Titanium and Its Alloys. Springer. 2001:171-230.
    [52] Kurrat R, Walivaara B, Marti A, Textor M, Tengvall P, Ramsden JJ, et al. Plasma protein adsorption on titanium: comparative in situ studies using optical waveguide lightmode spectroscopy and ellipsometry. Colloids and Surfaces B-Biointerfaces. 1998;11:187-201.
    [53] T. Sugimoto MO. Internal Medicine, Ver. 6. AsakuraShoten, Tokyo, Japan. 1995:2004.
    [54] Merritt K, Brown SA. EFFECT OF PROTEINS AND PH ON FRETTING CORROSION AND METAL-ION RELEASE. Journal of Biomedical Materials Research. 1988;22:111-20.
    [55] Williams RL, Brown SA, Merritt K. ELECTROCHEMICAL STUDIES ON THE INFLUENCE OF PROTEINS ON THE CORROSION OF IMPLANT ALLOYS. Biomaterials. 1988;9:181-6.
    [56] Ethridge LLHaEC. Biomaterials- The interfacial problem. Advanced Biomedical Engineering. 1975;5:35-150.
    [57] Sainio N. Corrosion and Electric Corrosion Protection. Tampere Univeristy of Applied Sciences. 2012.
    [58] How to Explain Potentiodynamic Polarization Curve & its Relation to Passivation of Behaviour of Metals: http://srizam-expro.blogspot.tw/2011/03/how-to-explain-potentiodynamic.html. 2011.
    [59] Klinger A, Steinberg D, Kohavi D, Sela MN. Mechanism of adsorption of human albumin to titanium in vitro. Journal of Biomedical Materials Research. 1997;36:387-92.
    [60] Serro AP, Fernandes AC, Saramago B, Lima J, Barbosa MA. Apatite deposition on titanium surfaces - The role of albumin adsorption. Biomaterials. 1997;18:963-8.
    [61] Tamura RN, Oda D, Quaranta V, Plopper G, Lambert R, Glaser S, et al. Coating of titanium alloy with soluble laminin-5 promotes cell attachment and hemidesmosome assembly in gingival epithelial cells: Potential application to dental implants. Journal of Periodontal Research. 1997;32:287-94.
    [62] Collis JJ, Embery G. ADSORPTION OF GLYCOSAMINOGLYCANS TO COMMERCIALLY PURE TITANIUM. Biomaterials. 1992;13:548-52.
    [63] Kane KR, Deheer H, Owens SR, Beebe JD, Swanson AB. ADSORPTION OF COLLAGENASE TO PARTICULATE TITANIUM - A POSSIBLE MECHANISM FOR COLLAGENASE LOCALIZATION IN PERIPROSTHETIC TISSUE. Journal of Applied Biomaterials. 1994;5:353-60.
    [64] P. Vaudaux XC, R. Emch, P. Descouts, D. Lew; G. Heimke, U. Soltész, AJC Lee (Eds. Clinical Implant Materials. Advances in Biomaterials. 1990;9:31.
    [65] Elwing H, Ivarsson B, Lundstrom I. SERUM COMPLEMENT DEPOSITION ON PLATINUM AND TITANIUM-OXIDE SURFACES MEASURED BY ELLIPSOMETRY AT LIQUID SOLID INTERFACE - NOTE. Journal of Biomedical Materials Research. 1987;21:263-7.
    [66] Satriano C, Marletta G, Carnazza S, Guglielmino S. Protein adsorption and fibroblast adhesion on irradiated polysiloxane surfaces. Journal of Materials Science-Materials in Medicine. 2003;14:663-70.
    [67] Anderson JM. Biomaterials Science: An Introduction to Materials in Medicine. Academic Press. 1996.
    [68] Ratner BD. Titanium in Medicine: A Perspective on Titanium Biocompatibility. Springer. 2001:1-12.
    [69] Thomsen P, Larsson C, Ericson LE, Sennerby L, Lausmaa J, Kasemo B. Structure of the interface between rabbit cortical bone and implants of gold, zirconium and titanium. Journal of Materials Science-Materials in Medicine. 1997;8:653-65.
    [70] S. Bauer PS, J. Park, K. von der Mark, C. vonWilmowsky,, K. A. Schlegel FWN, unpublished results.
    [71] Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl. 2011;50:2904-39.
    [72] Mor GK, Varghese OK, Paulose M, Grimes CA. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Adv Funct Mater. 2005;15:1291-6.
    [73] Raja KS, Misra M, Paramguru K. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium. Electrochimica Acta. 2005;51:154-65.
    [74] Sun L, Zhang S, Sun XW, He X. Effect of electric field strength on the length of anodized titania nanotube arrays. Journal of Electroanalytical Chemistry. 2009;637:6-12.
    [75] Sebastian Bauer JP, Andreas Pittrof,, Klaus von der Mark PS. Preparation, characterization and functionalization
    of nanostructured surfaces. Electrochemical Communication. 2006.
    [76] von Wilmowsky C, Bauer S, Lutz R, Meisel M, Neukam FW, Toyoshima T, et al. In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. J Biomed Mater Res B Appl Biomater. 2009;89:165-71.
    [77] Burridge K, ChrzanowskaWodnicka M. Focal adhesions, contractility, and signaling. Annual Review of Cell and Developmental Biology. 1996;12:463-518.
    [78] Giancotti FG. A Structural View of Integrin Activation and Signaling. Developmental Cell. 2003;4:149-51.
    [79] Park J, Bauer S, von der Mark K, Schmuki P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Letters. 2007;7:1686-91.
    [80] Oh S, Brammer KS, Li YS, Teng D, Engler AJ, Chien S, et al. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A. 2009;106:2130-5.
    [81] Bauer S, Park J, Faltenbacher J, Berger S, von der Mark K, Schmuki P. Size selective behavior of mesenchymal stem cells on ZrO2 and TiO2 nanotube arrays. Integrative Biology. 2009;1:525-32.
    [82] Park J, Bauer S, Schmuki P, von der Mark K. Narrow Window in Nanoscale Dependent Activation of Endothelial Cell Growth and Differentiation on TiO2 Nanotube Surfaces. Nano Letters. 2009;9:3157-64.
    [83] Bauer S, Park J, von der Mark K, Schmuki P. Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. Acta Biomaterialia. 2008;4:1576-82.
    [84] von der Mark K, Bauer S, Park J, Schmuki P. Another look at "Stem cell fate dictated solely by altered nanotube dimension''. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:E60-E.
    [85] Park J, Bauer S, Schlegel KA, Neukam FW, von der Mark K, Schmuki P. TiO2 Nanotube Surfaces: 15 nm - An Optimal Length Scale of Surface Topography for Cell Adhesion and Differentiation. Small. 2009;5:666-71.
    [86] Clarke M, Bennett M, Littlewood T. Cell death in the cardiovascular system. Heart. 2007;93:659-64.
    [87] Peng L, Mendelsohn AD, LaTempa TJ, Yoriya S, Grimes CA, Desai TA. Long-Term Small Molecule and Protein Elution from TiO2 Nanotubes. Nano Letters. 2009;9:1932-6.
    [88] Murakami A, Arimoto T, Suzuki D, Iwai-Yoshida M, Otsuka F, Shibata Y, et al. Antimicrobial and osteogenic properties of a hydrophilic-modified nanoscale hydroxyapatite coating on titanium. Nanomedicine-Nanotechnology Biology and Medicine. 2012;8:374-82.
    [89] Knetsch MLW, Koole LH. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers. 2011;3:340-66.
    [90] Ramstedt M, Ekstrand-Hammarstrom B, Shchukarev AV, Bucht A, Osterlund L, Welch M, et al. Bacterial and mammalian cell response to poly(3-sulfopropyl methacrylate) brushes loaded with silver halide salts. Biomaterials. 2009;30:1524-31.
    [91] Saji VS, Choe HC, Brantley WA. An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti-35Nb-5Ta-7Zr alloy for biomedical applications. Acta biomaterialia. 2009;5:2303-10.
    [92] Kuo SW, Lin HI, Ho JH, Shih YR, Chen HF, Yen TJ, et al. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topographical cues provided by silicon nanowires. Biomaterials. 2012;33:5013-22.
    [93] Macak JM, Tsuchiya H, Schmuki P. High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem-Int Edit. 2005;44:2100-2.
    [94] Seah KHW, Thampuran R, Chen X, Teoh SH. A COMPARISON BETWEEN THE CORROSION BEHAVIOR OF SINTERED AND UNSINTERED POROUS TITANIUM. Corrosion Science. 1995;37:1333-40.
    [95] Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials. 2003;24:263-73.
    [96] Ong KG, Varghese OK, Mor GK, Grimes CA. Numerical simulation of light propagation through highly-ordered titania nanotube arrays: Dimension optimization for improved photoabsorption. Journal of Nanoscience and Nanotechnology. 2005;5:1801-8.
    [97] Karpagavalli R, Zhou A, Chellamuthu P, Nguyen K. Corrosion behavior and biocompatibility of nanostructured TiO2 film on Ti6Al4V. Journal of Biomedical Materials Research Part A. 2007;83A:1087-95.
    [98] Agarwal A, Weis TL, Schurr MJ, Faith NG, Czuprynski CJ, McAnulty JF, et al. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. Biomaterials. 2010;31:680-90.
    [99] Wang J, Wang Z, Guo S, Zhang J, Song Y, Dong X, et al. Antibacterial and anti-adhesive zeolite coatings on titanium alloy surface. Microporous and Mesoporous Materials. 2011;146:216-22.
    [100] Schierholz JM, Lucas LJ, Rump A, Pulverer G. Efficacy of silver-coated medical devices. Journal of Hospital Infection. 1998;40:257-62.
    [101] Product information for RPMI 1640 Formulation. PAALaboratories Ltd.Available from:http://www.atmp-ready.com/products/cell_culture_products/media/ classical_media/rpmi1640/rpmi_1640_formulation.html. 2008.
    [102] NATURE MATERIALS | VOL 14 | JANUARY 2015
    [103] Partsofthebody.net
    [104] Join pain : http://www.ciosortho.com/
    [105] What-is-calcium-hydroxyapatite.htm
    [106] Mohammad Hafiz Uddin, Takuya Matsumoto, Masayuki Okazaki, Atsushi Nakahira and Taiji Sohmura (2010). Biomimetic Fabrication of Apatite Related Biomaterials, Biomimetics Learning from Nature, Amitava Mukherjee (Ed.)
    [107] Nielsen, S. P. The Biological Role of Strontium. Bone 2004,35, 583–588.
    [109] Marie, P. J. Strontium Ranelate: a Novel Mode of ActionOptimizing Bone Formation and Resorption. Osteoporosis Int. 2005, 16, S7–S10.
    [110] Ammann, P. Strontium Ranelate: A Novel Mode of Action Leading to Renewed Bone Quality. Osteoporosis Int. 2005,16, S11–S15.
    [111] Marie, P. J. Strontium Ranelate: New Insights into its DualMode of Action. Bone 2007, 4, S5–S8.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE