簡易檢索 / 詳目顯示

研究生: 邱泰瑋
Ciou, Tai-Wei
論文名稱: 外籍移工對台灣勞工薪資及雇用影響之因果分析
Casual Analysis of the Impact of Foreign Migrant Workers on Wages and Employment of Taiwanese Labor
指導教授: 冼芻蕘
Sin, Chor-Yiu
口試委員: 楊睿中
Yang, Jui-Chung
郭俊宏
Kuo, Chun-Hung
學位類別: 碩士
Master
系所名稱: 科技管理學院 - 經濟學系
Department of Economics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 134
中文關鍵詞: 外籍勞工因果分析合成控制法
外文關鍵詞: foreign migrant workers, causal analysis, synthetic control method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用因果分析方法(causal analysis)分析台灣2010年實施「3K五級制」外籍產業移工引進新制對整體國內製造業勞工之薪資與雇用影響,並檢視各別職業受影響之程度以了解政策造成之勞工替代與互補效果反映於高低技術勞工的影響。本文資料使用1993年至2019年勞動部「人力運用調查」資料進行實證分析,整理合併資料期間各版本行業及職業標準分類。本文使用的分析方法包括差異中的差異(difference in difference)、合成控制方法(synthetic Control Method)以及交錯型差異中的差異(staggered difference in difference)。
    本文發現,整體而言,外籍移工引進對國內勞工之薪資的影響並不顯著,但對雇用人數有顯著之負面影響。進一步,外籍移工對低技術勞工的薪資與雇用有負面影響;在高技術勞工的薪資部分同樣出現負面影響,但是製造業勞工中職業為「主管及經理人員」、「事務支援人員」等職業之雇用人數則有所增加。顯示在高技術勞工確實存在互補效果,但僅發生於雇用人數上,對薪資則否;在低技術勞工上則有替代效果。最後,本文發現在3K五級制後規模較大的工廠雇用了較多的本國勞工,顯示引進外籍移工後造成了本國勞工在不同規模的廠商中的分布有所變化。


    This study employs causal analysis to examine the impact of Taiwan's 2010 implementation of the "3K Five-Level System" for the recruitment of foreign industrial migrant workers on the wages and employment of domestic manufacturing workers. It also assesses the varying degrees of impact across different occupations to understand how the policy-induced labor substitution and complementarity effects manifest among high-skilled and low-skilled workers. The data used in this empirical analysis come from the "Manpower Utilization Survey" conducted by Taiwan's Ministry of Labor from 1993 to 2019, with adjustments made to consolidate industry and occupational classification standards across different versions during the data period. The analytical methods employed include Difference-in-Difference (DID), Synthetic Control Method (SCM), and Staggered Difference-in-Difference (Staggered DID).

    The findings indicate that, overall, the introduction of foreign migrant workers had no significant impact on the wages of domestic workers but did have a significant negative impact on employment numbers. Further analysis reveals that foreign migrant workers negatively affected the wages and employment of low-skilled workers, while high-skilled workers experienced negative effects on wages as well. However, within the manufacturing sector, occupations such as "managers and administrators" and "clerical support workers" saw an increase in employment numbers. This suggests that complementarity effects for high-skilled workers are evident in terms of employment but not wages, whereas substitution effects are observed for low-skilled workers. Finally, this study finds that after the implementation of the 3K five-level system, larger factories employed more domestic workers, indicating that the introduction of foreign migrant workers led to changes in the distribution of domestic workers across firms of different sizes.

    摘要(第 I 頁) Abstract(第 II 頁) 誌謝(第 IV 頁) 目錄(第 V 頁) 圖目錄(第 VIII 頁) 表目錄(第 X 頁) 1 緒論(第 1 頁) 2 文獻探討(第 6 頁) 2.1 台灣外籍移工與勞動市場(第 6 頁) 2.1.1 3K 五級制政策(第 6 頁) 2.1.2 移工對台灣勞動市場影響之相關文獻(第 7 頁) 2.1.3 移工分析的內生性問題(第 9 頁) 2.2 因果分析方法:差異中的差異與合成控制方法(第 10 頁) 2.2.1 差異中的差異(第 10 頁) 2.2.2 合成控制方法(第 10 頁) 2.2.3 改良合成控制與交互固定效果模型(第 11 頁) 2.3 政策的自然實驗地位(第 12 頁) 3 資料與實證方法(第 15 頁) 3.1 資料來源及處理(第 15 頁) 3.1.1 行業分類整併說明(第 15 頁) 3.1.2 職業分類整併說明(第 18 頁) 3.1.3 追蹤資料處理(第 24 頁) 3.2 估計方法(第 24 頁) 3.2.1 差異中的差異 (difference in difference, DID)(第 25 頁) 3.2.2 合成控制方法 (synthetic control method)(第 26 頁) 3.2.3 交錯型差異中的差異 (staggered difference in difference, Staggered DID)(第 26 頁) 3.2.4 估計方法適用資料的特徵與限制(第 27 頁) 3.3 實證政策與模型(第 27 頁) 3.3.1 3K 五級制(第 28 頁) 3.3.2 勞工與薪資估計模型(第 36 頁) 3.3.3 變數概覽(第 37 頁) 3.4 資料概覽(第 44 頁) 3.4.1 行業別、職業別與員工規模別交叉分析(第 56 頁) 4 實證結果(第 62 頁) 4.1 整體薪資與雇用(第 62 頁) 4.1.1 整體薪資(第 62 頁) 4.1.2 整體勞工雇用(第 69 頁) 4.2 替代與互補:職業與政策效果之關係(第 73 頁) 4.2.1 各職業薪資影響(第 73 頁) 4.2.2 各職業雇用人數影響(第 75 頁) 4.3 廠商規模與政策效果之關係(第 84 頁) 5 結論(第 89 頁) 參考文獻(第 91 頁) 附錄(第 96 頁) .1 詳細估計結果(第 96 頁) .1.1 各職業合成控制方法詳細估計結果(第 96 頁) .1.2 各規模合成控制方法詳細估計結果(第 102 頁) .2 合成控制方法及其改良(第 107 頁) .2.1 符號(第 107 頁) .2.2 合成控制方法 (synthetic control method)(第 109 頁) .2.3 線性回歸取徑 (linear regression approach)(第 111 頁) .3 估計方法模擬結果(第 122 頁) .3.1 資料生成過程 (data generating process)(第 122 頁) .4 合成控制方法的統計推論建構(第 132 頁)

    [1] 單驥(1996)。外籍勞工、技術、非技術人員與資本之間替代關係之探討-以台灣製造業為例。《人口、就業與福利》,39-71。
    [2] 徐美、陳明郎、吳孟道 (1997)。外籍勞工與國內生產要素間替代互補關係之探討-以臺灣製造業為例。臺灣經濟學會年會論文集,65-91。
    [3] 江豐富(2006)。外勞引進對本國勞工失業、職業選擇及薪資之影響。臺灣經濟預測與政策,37(1),69-111。
    [4] 陳坤銘(2007)。引進外籍勞工對台灣經濟影響之再分析。中山人文社會科學期刊,15(1),1-26。
    [5] 張景褔、盧其宏、劉錦添(2011)。勞工組成特性對工廠生產力及薪資之影響:以台灣電子業工廠為例。經濟論文叢刊,39(2),177-212。
    [6] 李長泰、張景福(2019)。外籍勞工對本國勞工薪資與雇用之影響:臺灣之實證研究。經濟研究,55(2),279-321。
    [7] 蔡青龍、林季平 (2000)。外籍勞工對本土勞工工作異動之影響分析。行政院經濟建設委員會。
    [8] 辛炳隆、劉宜君 (2015)。實施3K產業外勞新制之影響及效益評估。勞動部勞動力發展署研究計畫。
    [9] 成之約、Cheng, Chih-Yu、林國榮 (2012)。3K產業外勞5級制實施對我國勞動市場與產業發展影響探討。《就業安全》,11(2),102-107。
    [10] 高育幸 (2018)。放寬藍領外勞員額可行性分析報告。國家發展委員會。人力規劃及發展研究報告第18輯,161-197。
    [11] 許聖章、林嘉慧 (2019)。製造業3K產業引進外籍勞工對產業升級與本國勞工就業權益之影響及效益評估。
    [12] 盧其宏(2009)。外籍勞工雇用對廠商生產力及薪資之影響—台灣製造業之實證研究。〔碩士論文,國立臺灣大學〕。
    [13] 周志霖(2017)。引進外籍勞工對我國薪資之影響。〔碩士論文,國立臺灣大學〕。
    [14] 吳韶璇(2019)。引進籍勞工對本國勞工需求之影響分析。(碩士論文,國立中央大學)。
    [15] Abadie, A., & Gardeazabal, J. (2003). The Economic Costs of Conflict: A Case Study of the Basque Country. The American Economic Review, 93(1), 113–132.
    [16] Abadie, A., Diamond, A., & Hainmueller, J. (2010). Synthetic control methods for comparative case studies: Estimating the effect of California’s tobacco control program. Journal of the American Statistical Association, 105(490), 493-505.
    [17] Abadie, A., Diamond, A., & Hainmueller, J. (2015). Comparative politics and the synthetic control method. American Journal of Political Science, 59(2), 495-510.
    [18] Abadie, A. (2021). Using synthetic controls: Feasibility, data requirements, and methodological aspects. *Journal of Economic Literature, 59*(2), 391–425.
    [19] Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica, 77(4), 1229-1279.
    [20] Bertrand, M., Duflo, E., & Mullainathan, S. (2004). How Much Should We Trust Differences-in-Differences Estimates? The Quarterly Journal of Economics, 119(1), 249–275.
    [21] Bertsimas, D., King, A., & Mazumder, R. (2016). Best subset selection via a modern optimization lens.
    [22] Besley, T., & Case, A. (2000). Unnatural Experiments? Estimating the Incidence of Endogenous Policies. The Economic Journal, 110(467), F672–F694.
    [23] Blundell, R., & Macurdy, T. (1999). Labor supply: A review of alternative approaches. In O. C. Ashenfelter & D. Card (Eds.), Handbook of Labor Economics (Vol. 3, pp. 1559–1695). Elsevier.
    [24] Callaway, B., & Sant’Anna, P. H. C. (2021). Difference-in-differences with multiple time periods. Journal of Econometrics, 225(2), 200–230.
    [25] Card, D. (1990). The Impact of the Mariel Boatlift on the Miami Labor Market. Industrial and Labor Relations Review, 43(2), 245–257.
    [26] Card, D., & Krueger, A. B. (2000). Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania: Reply. The American Economic Review, 90(5), 1397–1420.
    [27] Doudchenko, N., & Imbens, G. W. (2016). Balancing, regression, difference-in-differences and synthetic control methods: A synthesis (No. w22791). National Bureau of Economic Research.
    [28] Engle, R. F., Hendry, D. F., & Richard, J.-F. (1983). Exogeneity. Econometrica, 51(2), 277–304.
    [29] Gobillon, L., & Magnac, T. (2016). Regional policy evaluation: Interactive fixed effects and synthetic controls. The Review of Economics and Statistics, 98(3), 535–551.
    [30] Hastie, T., Tibshirani, R., & Tibshirani, R. (2020). Best subset, forward stepwise or lasso? Analysis and recommendations based on extensive comparisons.
    [31] Hsiao, C., Steve Ching, H., & Ki Wan, S. (2012). A panel data approach for program evaluation: Measuring the benefits of political and economic integration of Hong Kong with mainland China. Journal of Applied Econometrics, 27(5), 705-740.
    [32] Hsiao, C., & Zhou, Q. (2019). Panel parametric, semiparametric, and nonparametric construction of counterfactuals. Journal of Applied Econometrics, 34(4), 463-481.
    [33] Liu, J. T., Tsou, M. W., & Wang, P. (2010). Workforce composition and firm productivity: Evidence from Taiwan. Economic Inquiry, 48(4), 1032-1047.
    [34] Liu, L., Wang, Y., & Xu, Y. (2024). A practical guide to counterfactual estimators for causal inference with time-series cross-sectional data. American Journal of Political Science, 68, 160-176.
    [35] Maamoun, N. (2019). The Kyoto protocol: Empirical evidence of a hidden success. Journal of Environmental Economics and Management, 95, 227–256.
    [36] Peri, G., & Yasenov, V. (2019). The labor market effects of a refugee wave: Synthetic control method meets the Mariel boatlift. Journal of Human Resources, 54(2), 267-309.
    [37] Pesaran, M.H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 74, 967-1012.
    [38] Pischke, J.-S. (2007). The impact of length of the school year on student performance and earnings: Evidence from the German short school years. The Economic Journal, 117, 1216-1242.
    [39] Solon, G., Haider, S. J., & Wooldridge, J. M. (2015). What are we weighting for? The Journal of Human Resources, 50(2), 301–316.
    [40] Xu, Y. (2017). Generalized synthetic control method: Causal inference with interactive fixed effects models. Political Analysis, 25(1), 57-76.

    QR CODE