研究生: |
劉泓孝 Liu, Hung-Hsiao |
---|---|
論文名稱: |
PEM燃料電池進氣流場設計與陰極觸媒量子化學計算及電化學光電子量測 Air-side Flow Field Design and Computational Quantum Chemistry with Electrochemical Photoelectron Measurements on the Cathodic Catalyst in PEMFCs |
指導教授: |
洪哲文
Hong, Che-Wun |
口試委員: |
楊鏡堂
Yang, Jing-Tang 薛康琳 Hsueh, Kan-Lin 張博凱 Chang, Bor-Kae 鄭欽獻 Cheng, Chin-Hsien |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | 質子交換膜燃料電池 、氣體的均勻性分佈 、氧還原反應 、密度泛函理論 、束縛能 、活化能 、d-band中心 |
外文關鍵詞: | proton exchange membrane fuel cell, flow distribution, oxygen reduction reaction, density functional theory, binding energy, activation energy, d-band center |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對質子交換膜燃料電池(proton exchange membrane fuel cell, PEMFC)陰極端反應氣體的均勻性分佈與觸媒的氧還原反應(oxygen reduction reaction, ORR)這兩種關鍵重要步驟做相關模擬實驗與細節探討。
首先,本研究建立一工業級67 cell 5-kW PEMFC三維陰極端實體模型,利用有限體積法來研究罩板與檔板設計對於壓力與質量流率分佈均勻性的影響。結果證明在上罩板增加多孔檔板,可以有效改善流場的均勻性。質量流率的變化由39%降低到2%,可以產生較高的壓力與較均勻的質量流率。研究經光學輔助流體可視化實驗驗證理論模擬的正確性。
在觸媒的理論研究方面,本研究使用第一原理(first principles) 計算配合密度泛函理論 (density functional theory, DFT) 研究ORR反應機制,探討燃料電池陰極觸媒ORR的詳細過程,並計算出反應步驟的吸附能。此外,本研究以 Sabatier principle為基礎,使用Brønsted–Evans–Polanyi relation (BEP)關係來計算活化能,最後調整白金參雜在單臂奈米碳管(SWCNT)與石墨烯(GR)上的重量百分比,以得出具有較高反應活性的組合,最後使用Sabatier Analysis來量化觸媒的活性。本研究發現,Pt/GR白金的重量百分比為85.3wt%時,有良好的反應活性,而Pt/SWCNT參雜白金的重量百分比為18.5 wt%時,有最好的反應活性,後者可大幅降低白金的使用量,並維持良好的反應活性。
觸媒實驗使用旋轉圓盤電極與X光光電子能譜儀,兩種儀器用來量測商用Ni/CNTs的活化能與束縛能,結果發現束縛能與活化能有相同的趨勢性。在活化能實驗與模擬部分,藉由BEP關係式得到的活化能與實驗值相比趨勢相同且誤差皆在同一量級。由實驗的氧1s (O 1s)窄能譜得知,添加Ni金屬觸媒,會使O-Ni與O-H2的化學鍵位移有所增加。在模擬方面,當Ni比例持續增加到20.1wt%,鎳觸媒還是無法達到火山圖的尖點,不過離Au觸媒距離不甚遠。總而言之,使用本研究的理論可以預測觸媒比例及奈米碳材支架架構,對氧還原反應活性之影響,趨勢可完全準確預測,而數值結果在工程可接受範圍,另外電腦模擬可以大量省下觸媒調配之昂貴經費與時間。
This thesis carries out simulations and experiments to study the flow distribution in the inlet air manifold and oxygen reduction reaction (ORR) at the cathode catalyst of a proton exchange membrane fuel cell (PEMFC).
The simulation establishes a real-size 3D fluid dynamics model of the air-side manifold of an industrial 5-kW PEMFC stack containing 67 cells. Finite volume method was employed to study the effect of manifold and baffle designs on the pressure and mass flow rate uniformity. Adding a baffle below the inlet air stream and a porous baffle on top of the channel engenders a highly uniform mass flow rate and pressure distribution. Adding a baffle in the inlet manifold reduces the mass flow variation in the inlet air channels from 39% to 2%. Through optical flow visualization experiments, the flow field simulation was proved correct.
The 2nd part of this thesis studies the mechanisms of the reaction by first principles calculation using density functional theory (DFT). The adsorption energy of the system, binding energy and activation energy of the ORR are all evaluated, and Brønsted–Evans–Polanyi relation (BEP) is used to calculate the catalyst activity. In order to find out the highest reaction activity, the weight percentage of Pt doped on nano-frames is tuned. Simulation results show that the 85.3 wt% of Pt on graphene (GR) and 18.5 wt% of Pt doped on single wall carbon nano-tubes (SWCNTs) have the best reaction activities.
Commercial Ni / CNTs catalysts have also been investigated using rotating disk electrode measurement and X-ray photoelectron spectroscopy. Simulation and experimental results revealed that binding energy and activation energy have similar trends. In conclusion, catalyst weight percentages can be predicted using the simulation and experimental results from this study. The effect of nano carbon frame to oxygen reduction reaction rate can also be predicted. The predicted trends are in good agreement with experiments. Moreover, computer simulation can save the cost and time compared with trial and error experiments in catalyst composition tuning.
1. H. Liu, P. Li, and J.V. Lew, CFD study on flow distribution uniformity in fuel distributors having multiple structural bifurcations of flow channels, International Journal of Hydrogen Energy, 35 (2010) 9186-9198
2. D. Chen, Q. Zeng, S. Su, W. Bi, Z. Ren, Geometric optimization of a 10-cell modular planar solid oxide fuel cell stack manifold, Applied Energy, 112 (2013) 1100–1107
3. Y. Sung, Optimization of a fuel-cell manifold , Journal of Power Sources, 157 (2006) 395-400
4. C.H. Chen, S-P. Jung, S-C. Yen, Flow distribution in the manifold of PEM fuel cell stack, Journal of Power Sources, 173 (2007) 249–263
5. R. Mustata, L. Valino, F. Barreras, M.I. Gil, A. Lozano, Study of the distribution of air flow in a proton exchange membrane fuel cell stack, Journal of Power Sources, 192 (2009) 185–189
6. W. Bi, J. Li, Z. Lin, Flow uniformity optimization for large size planar solid oxide fuel cells with U-type parallel channel designs, Journal of Power Sources, 195 (2010) 3207–3214
7. C.M. Huanga, S.S. Shya, C.H. Lee, On flow uniformity in various interconnects and its influence to cell performance of planar SOFC , Journal of Power Sources, 183 (2008) 205–213
8. X.D. Wang, Y.X. Huang, C.H. Cheng, J.Y. Jang, D.J. Lee, W-M. Yan, A. Su, An inverse geometry design problem for optimization of single serpentine flow field of PEM fuel cell, International Journal of Hydrogen Energy, 35 (2010) 4247 – 4257
9. C.H. Cheng, K. Fei, C.W. Hong, Computer simulation of hydrogen proton exchange membrane and direct methanol fuel cells, Computers and Chemical Engineering, 31 (2007) 247–257
10. W. Zhang, P. Hu, X. Lai, L. Peng, Analysis and optimization of flow distribution in parallel-channel configurations for proton exchange membrane fuel cells, Journal of Power Sources, 194 (2009) 931–940
11. J. Lebæk, M. Bang, S. K. Kær, Flow and pressure distribution in fuel cell manifolds, Journal of Fuel Cell Science and Technology, 7 (2010) 061001- 061008
12. W. L. Huang, Q. Zhu, Flow distribution in U-type layers or stacks of planar fuel cells, Journal of Power Sources, 178 (2008) 353–362
13. X.D. Wang, Y.X. Huang, C.H. Cheng, J.Y. Jang, D.J. Lee, W-M. Yan, A. Su, Flow field optimization for proton exchange membrane fuel cells with varying channel heights and widths, Electrochimica Acta, 54 (2009) 5522 – 5530
14. B. Chernyavsky, K. Ravi, P.C Sui, N. Djilali, P. Benard, Numerical investigation of flow field in PEM fuel cell stack headers, Energy Procedia 29 ( 2012 ) 102 – 111
15. P. Costamagna, E. Arato, E. Achenbach, U. Reus, Fluid dynamic study of fuel cell devices: simulation and experimental validation, Journal of Power Sources, 52 (1994) 243-249
16. R.J. Boersma, N.M. Sammes, Distribution of gas flow in internally manifolded solid oxide fuel-cell stacks, Journal of Power Sources, 66 (1997) 41-45
17. J.H Koh, H.K Seo, C.G Lee, Y.S Yoo, H.C. Lim, Pressure and flow distribution in internal gas manifolds of a fuel-cell stack, Journal of Power Sources, 115 (2003) 54–65
18. S. Maharudrayya, S. Jayanti, A.P. Deshpande, Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells, Journal of Power Sources, 144 (2005) 94–106
19. M.S. Hyun, S.K. Kim, D. Jung, B. Lee, D. Peck, T. Kim, Y. Shul, Prediction of anode performances of direct methanol fuel cells with different flow-field design using computational simulation, Journal of Power Sources, 157 (2006) 875–885
20. S.F. Lee, C.W. Hong, Multi-scale Design Simulation of an Intermediate-Temperature Planar Micro Solid Oxide Fuel Cell Stack, Int. J. of Hydrogen Energy, 35, (2010) 1330-1338
21. G. Karimi, J.J. Baschuk, X. Li, Performance analysis and optimization of PEM fuel cell stacks using flow network approach, Journal of Power Sources, 147 (2005) 162–177
22. J. Wang, Pressure drop and flow distribution in parallel-channel configurations of fuel cells: U-type arrangement, International Journal of Hydrogen Energy, 33 (2008) 6339 – 6350
23. T. Dutta, K.P. Sinhamahapatra , S.S. Bandyopdhyay, Comparison of different turbulence models in predicting the temperature separation in a Ranque–Hilsch vortex tube, International Journal of Refrigeration, 33 (2010) 783–792
24. B. Chernyavsky, P.C. Sui, B.S. Jou, N. Djilali, Turbulent flow in the distribution header of a PEM fuel cell stack, International Journal of Hydrogen Energy, 36 (2011) 7136-7151.
25. B. Ramos-Alvarado, A. Hernandez-Guerrero, D. Juarez-Robles, P. Li, Numerical investigation of the performance of symmetric flow distributions as flow channels for PEM fuel cells, International Journal of Hydrogen Energy, 37 (2012) 436-448.
26. Y. Ding, X.T. Bi, D.P. Wilkinson, Numerical investigation of the impact of two-phase flow maldistribution on PEM fuel cell performance, International Journal of Hydrogen Energy, 39 (2014) 469-480.
27. B.E. Launder, and D.B. Spalding, “The numerical computation of turbulent flow,” Comput. Methods Appl. Mech. Eng., Vol. 3, 1974, pp. 269-289.
28. Report from Fuel Cell Technologies Office, DOE U.S. (2014). (https://energy.gov/sites/prod/files/2015/10/f27/fcto_2014_market_report.pdf), 2017.1.21.
29. A. Mayyas, M. Wei, S.H. Chan, T. Lipman, NREL Report, (2015). (http://www.nrel.gov/analysis/pdfs/Fuel%20Cell%20Forklift%20Deployment%20in%20the%20US.pdf), 2017.1.21.
30. B.D. James, A.B. Spisak, Strategic Analysis Report (2012). (https://energy.gov/eere/fuelcells/downloads/mass-production-cost-estimation-direct-h2-pem-fuel-cell-systems-automotiv-1), 2017.1.21.
31. S. Hardman, E. Shiu, R. Steinberger-Wilckens, Changing the fate of Fuel Cell Vehicles: Can lessons be learnt from Tesla Motors?, Int. J. Hydrogen Energy, 40 (2015) 1625-1638.
32. Y.H. Lin, X.L. Cui, C. Yen and C.M. Wai, Platinum/carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells, Journal of Physical Chemistry B, 109:30 (2005) 14410-14415.
33. E.Yoo, T. Okata, T. Akita, M. Kohyama, J. Nakamura and I. Honma, Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface, Nano Letters, 9:6 (2009) 2255-2259.
34. Y. Shao, S. Zhang, C. Wang, Z. Nie, J. Liu, Y. Wang and Y.H. Lin, Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction, Journal of Power Sources, 195:15 (2010) 4600-4605.
35. K.E. Hayes and H.S. Lee, First principles studies of the electronic properties and catalytic activity of single-walled carbon nanotube doped with Pt clusters and chains, Chemical Physics, 393:1 (2012) 96-106.
36. D.H. Lim, D.H. and J. Wilcox, Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles, Journal of Physical Chemistry C, 116:5 (2012) 3653-3660.
37. J. Greeley, T.F. Jaramillo, J. Bonde, I.B. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, Nature Materials, 5:11 (2006) 909-913.
38. J. Greeley, and J.K. Norskov, Large-scale, density functional theory-based screening of alloys for hydrogen evolution, Surface Science, 601(6) (2007) 1590-1598.
39. J. Greeley, and J.K. Norskov, Combinatorial density functional theory-based screening of surface alloys for the oxygen reduction reaction, J. Phys. Chem. C, 113,12 (2009) 4932-4939
40. J.A. White and D.M. Bird, Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations, Phys.Rev.B, 50 (1994) 4954-4957
41. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys.,98 (1993) 5648-5652
42. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, L. J. Phys. Rev., 140 (1965) A1133-A1138
43. A.D. Beck, Density-fnnctional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38, 6 (1988)3098-3100
44. J. P. Perdew, Density-functional Approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B, 33, 12 (1986) 8822-8827.
45. J. P. Perdew, K. Burke, and Y. Wang, Generalized gradient approximation for the exchange-correlation hole of a many-electron system, Phys. Rev. B, 54, 23 (1996) 16533-16537.
46. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77 (1996) 3865-3868
47. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Reviews of Modern Physics, 64:4, (1992) 1045-1097.
48. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Physical Review B, 41:11, (1990) 7892-7895.
49. K. Kinoshita, Electrochemical Oxygen Technology, Wiley, New York, (1992).
50. H. Li, G. Sun, N. Li, S. Sun, D. Su, and Q. Xin, Design and preparation of highly active Pt− Pd/C catalyst for the oxygen reduction reaction, J. Phys. Chem. C, 111 (2007) 5605 – 5617.
51. C.H. San and C.W. Hong, Quantum analysis on the platinum/nitrogen doped carbon nanotubes for the oxygen reduction reaction at the air cathode of lithium-air batteries and fuel cells, J. Electrochem. Soc., 159 :5 (2012) 116-121.
52. X. Hong, K. Chan, C. Tsai, J.K. Nørskov, How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction, ACS Catalysis, 6 (2016) 4428−4437.
53. Y. Xu, A.V. Ruban and M. Mavrikakis, Adsorption and Dissociation of O2 on Pt−Co and Pt−Fe Alloys, J. Am. Chem. Soc., 126:14, (2004) 4717–4725.
54. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson and M.C.Payne, First principles methods using CASTEP, Zeitschrift für Kristallographie, 220:5-6: (2005) 567-570.
55. T. Bligaard, J.K. Nørskov, S. Dahl, J. Matthiesen, C.H. Christensen and J. Sehested, The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis, Journal of Catalysis, 224 (2004) 206–217.
56. Aravind Asthagiri, M.J.J., Computational Catalysis, ed. P.J.J. Spivey. Cambridge, UK: The Royal Society of Chemistry (2014).
57. J.K. Norskov, J. Rossmeisl, , A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard and H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, Journal of Physical Chemistry B, 108:46, (2004) 17886-17892.
58. S. Wang, V. Petzold, V. Tripkovic, J. Kleis, J. G. Howalt, E. Skúlason, E. M. Fernández, B. Hvolbæk, G. Jones, A. Toftelund, H. Falsig, M. Björketun, F. Studt, F. Abild-Pedersen, J. Rossmeisl, J. K. Nørskov and T. Bligaard, Universal transition state scaling relations for (de) hydrogenation over transition metals, Physical Chemistry Chemical Physics, 13:46, (2011) 20760-20765.
59. H. Falsig, Understanding Catalytic Activity Trends for NO Decomposition and CO Oxidation using Density Functional Theory and Microkinetic Modeling, Danmarks Tekniske Universitet, (2010) 19-27.
60. P. Sabatier, Ber. Deutsch. Chem. Gesellshaft, 44, 1984 (1911).
61. D.C. Sorescu, K.D. Jordan and P. Avouris, Theoretical study of oxygen adsorption on graphite and the (8,0) single-walled carbon nanotube. Journal of Physical Chemistry B, 105:45, (2001) 11227-11232.
62. C.L. Hsu, Computational Quantum Chemistry Analysis of the Cathodic Catalyst in Low Temperature Fuel Cells, National Tsing Hua University, (2013) 56-60.
63. Fuel Cell Technologies Market Report. (https://energy.gov/sites/prod/files/2017/10/f37/fcto_2016_market_report.pdf), 2017.10.10.
64. Report from Fuel Cell Technologies Office, DOE U.S. (2015). (http://www.fuelcellindustryreview.com/archive/TheFuelCellIndustryReview2015.pdf), 2017.1.21.
65. C. Laycock, Fuel Cells in the Real World Part 2: Proton Exchange Membrane Fuel Cells. (https://sercusw.wordpress.com/2014/05/09/fuel-cells-in-the-real-world-part-2-proton-exchange-membrane-fuel-cells/), 2017.1.21.
66. Fuel Cell Today Report (2013). (http://www.fuelcelltoday.com/media/1889744/fct_review_2013.pdf), 2017.1.21.
67. O.Z. Sharaf, M.F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renewable and Sustainable Energy Reviews, 32 (2014) 810-853.
68. T. Elmer, M. Worall, S. Wu, S.B. Riffat, Fuel cell technology for domestic built environment applications: State of-the-art review, Renewable and Sustainable Energy Reviews, 42 (2015) 913–931.
69. P.E. Dodds, I. Staffell, A.D. Hawkes, F. Li, P. Grunewald, W. McDowall and P. Ekins, Hydrogen and fuel cell technologies for heating: a review, Int. J. Hydrogen Energy, 40 (2015) 2065-2083.
70. W.Z. Li, C.H. Liang, W.J. Zhou, J.S. Qiu, Z.H. Zhou, G.Q. Sunl and Q. Xin, Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells, J Phys Chem,107:26 (2003) 6292–9629.
71. G. Wu, Y. S. Chen, B. Q. Xu. Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation, Electrochem Commun, 7:12 (2005)1237–1243.
72. G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production, Langmuir, 15:3 (1999) 750–8.
73. S.C. Zignani, E. Antolini, E.R. Gonzalez, Stability of Pt–Ni/C (1:1) and Pt/C electrocatalysts as cathode materials for polymer electrolyte fuel cells: effect of ageing tests, Journal of Power Sources, 191 (2009) 344–350.
74. Y.Y. Shao, G.P. Yin, Y.Z. Gao and P.F. Shi, Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions, J Electrochem Soc, 153:6 (2006) 1093–1097.
75. X.Wang, W.Z. Li, Z.W. Chen, M. Waje and Y.S.Yan, Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell, J Power Sources, 158:1 (2006) 154–159.
76. C.T. Hsieh, J.Y. Lin and J.L. Wei, Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes, IJHE., 34 (2009) 685-693
77. Z. Zhuang, S.A. Giles, J. Zheng, G.R. Jenness, S. Caratzoulas, D.G. Vlachos and Y. Yanb, Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte, Nature Communications, (2016) 1-8.
78. Z.W. Liu, J.F. Qu, X. Fu, Q.D. Wang, G.Y. Zhong and F. Peng, Low Pt content catalyst supported on nitrogen and phosphorus-codoped carbon nanotubes for electrocatalytic O2 reaction in acidic medium, Materials Letters, 142 (2015) 115–118.
79. A. Schlapka, M. Lischka, A. Groß, U. Kasberger and P. Jakob, Surface Strain versus Substrate Interaction in Heteroepitaxial Metal Layers: Pt on Ru(0001), Phys. Rev. Letters, 91 (2003) 1-4
80. M.J. Eslamibidgoli and M.H. Eikerling, Atomistic Mechanism of Pt Extraction at Oxidized Surfaces:Insights from DFT, Electrocatalysis, 7 (2016) 345-354
81. V. Stamenkovic, B.S. Mun, K.J.J Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley and J.K. Nørskov, Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure, Angew. Chem. Int. Ed., 45, (2006) 2897-2901.
82. S.Y. Wang, D.S. Yu, L.M. Dai, D.W. Chang and J.B. Baek, Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction, ACS NANO, 5 (2011) 6202-6209
83. J.V. Rojas, M. Toro-Gonzalez, M.C. Molina-Higgins, C.E. Castano, Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes, Materials Science and Engineering B, 205 (2016) 28–35.
84. M.C.K Sellers, N.P. Zussblatt, C.P. Marsh, Potassium perruthenate-treated carbon nanotube sheets for flexible supercapacitors, Electrochemistry Communications, 18 (2012) 58–61.
85. Q.N. Wu, M. Wen, S.P. Chen, Q.S. Wu, Lamellar-crossing-structured Ni(OH)2/CNTs/Ni(OH)2 nanocomposite for electrochemical supercapacitor materials, Journal of Alloys and Compounds, 646(2015) 990-997
86. M.K. Sabbe, L. Laín, M.F. Reyniers and G.B. Marin, Benzene adsorption on binary Pt3M alloys and surface alloys: a DFT study, Phys. Chem. Chem. Phys., 15 (2013) 12197—12214.
87. Y. Kim, Y.M. Kwon, J.W. Hong, Bu-Seo Choi, Y.S. Park, M.J Kim and S. W. Han, Controlled synthesis of highly multi-branched Pt-based alloy nanocrystals with high catalytic performance, Cryst Eng Comm. , 18 (2016) 2356–2362.
88. V. Stamenkovic, B.S. Mun, M.T. Arenz, K.J.J Mayrhofer, C.A. Lucas, G.F. Wang, P. Ross and N.M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, nature Materials, 6(2007) 241-247.
89. A. Logadottir, T.H Rod, J.K Nørskov, B. Hammer, S Dahl, C.J.H Jacobsen, The Brønsted–Evans–Polanyi Relation and the Volcano Plot for Ammonia Synthesis over Transition Metal Catalysts, Journal of Catalysis, 197:2 (2001) 229-231.
90. T. Toda, H.S. Igarashi, H.Y. Uchida and M. Watanabe, Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co, J. Electrochem. Soc., 146(1999) 3750-3756.