簡易檢索 / 詳目顯示

研究生: 林俊佳
Lin, Jun-Jia
論文名稱: 彈性3D成形技術:曲面熱刮製程及佈料頭座向控制之軟體程序開發
Freeform Additive Manufacturing: Software Algorithm Development for Hot Scrapping of Curved Surfaces and Orientation Control of the Dispensing Head
指導教授: 曹哲之
Tsao, Che-Chih
口試委員: 鄭中緯
Cheng, Chung-Wei
林士傑
Lin, Shih-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 181
中文關鍵詞: 刀具路徑規劃熱刮品質改善佈料頭座向控制軟體開發
外文關鍵詞: Tool path planning, Quality improvement of hot scrapping, The orientation control of the dispensing head, Software development
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是針對「彈性3D成形技術」的數據資料處理軟體部分的進行新功能的配套開發,在維持原軟體功能及效能的同時,增添基於曲棒的曲面熱刮製程規劃及佈料方向相對於成形方向的調整(即佈料頭座向控制)的程序實現。「彈性3D成形技術」的亮點在於可調整的佈料寬度以及沿物件切線方向佈料,藉此提升成型速度。為改善成品表面粗糙度,在佈料製程後增添了熱刮機制進行處理,由於原熱刮棒對於處理複雜曲面存在一定的局限性,故將其從直棒調整為曲棒,並以此為基礎開發其配套軟體進行路徑規劃。同時為實現水平方向上的增厚列印,將五軸機台運動學模型進行轉換改造,以實現佈料頭的座向控制。
    針對曲棒熱刮的軟體方面,將現有的資料數據進行重新梳理、提取,通過對原有構型幾何中表面三角形切面數據的捕獲,建立新的資料結構,根據不同的運用場景,開發出三種基於曲棒的模型表面匹配方式,用於優化熱刮路徑,使其盡可能的靠近成品本身曲率,並擴展出在厚切模型下成品表面曲率的優化方式。
    在佈料頭座向控制中,根據路徑轉換為控制機台中的控制碼這一過程,建立相應的轉換算法,使佈料頭有更強的適應性及足夠的調整空間,降低其在增厚列印中的干擾,並完成了初步的驗證。


    The main purpose of this research is to develop new functions for the geometric data processing software for the Freeform Additive Manufacturing (FAM). The FAM technology features vari-directional material deposition along the tangential directions of part surface which gives surface smoothness and vari-dimensional material deposition according to need of local geometry to increase build rate. In order to achieve good surface finish, material dispensing and a hot scrapping step are applied alternately during the process. The original FAM geometric data processing software has limitations in geometric capability. The hot scrapping process used a straight rod and thus could not produce true curved surfaces efficiently. The dispensing head dispensed erected ribbon-shape material in the same direction as the forming direction and thus is not able to stack multiple ribbons.
    In this research, a curved surface hot-scrapping function based on application of a curved hot-scraping bar and an orientation control function for the dispensing head, which adjusts of the dispensing direction relative to the forming direction, were developed.
    For the function of hot scrapping by curved bar, three curved bar-based model surface adaptation methods were devised and analyzed to make the scrapped surfaces as close to designed curvature as possible. Based on effectiveness and efficiency, one method was selected and developed and tested by using interference analysis and solid modeling. The application of the method for an improved thick-layer method was further studied.
    For the orientation control of the dispensing head, based on the kinematic structure of the FAM’s 5 degree of freedom machine, a corresponding conversion algorithm was established and the data processing program was modified to make the orientation of dispensing head adjustable. The function was verified by basic but actual demonstration on the FAM machine.

    摘要 i ABSTRACT ii 目錄 iv 圖目錄 vii 表目錄 xvi 第一章 緒論 1 1.1 動機與目的 1 1.2 相關技術探討 10 1.3 研究方法 22 第二章 曲面匹配算法設計 25 2.1 熱刮棒2D投影匹配法 27 2.1.1 基於5點的曲線擬合及曲率獲取 34 2.1.2 熱刮棒旋轉變化下的投影曲率獲取 47 2.2 熱刮棒點雲匹配法 54 2.2.1 熱刮棒旋轉變化下的接觸線提取 56 2.2.2 模型在三維空間中的姿態調整 61 2.2.3 接觸點篩選機制的建立 63 2.2.4 接觸線匹配程式設計 69 2.3 熱刮棒切片匹配法 73 2.3.1 旋轉橢圓方程式的建立 74 2.3.2 篩選點區間優化 79 2.3.3 橢圓匹配算法設計 82 2.4 針對熱刮切片匹配法的姿態修正 89 2.5 針對熱刮棒切片匹配法的路徑修正 91 2.6 基於切片匹配法的結果與討論 101 2.7 適用於厚層列印的表面熱刮製程 110 第三章 佈料頭座向控制 127 3.1 佈料頭座向控制的設計 127 3.1.1 齊次坐標的變換 129 3.1.2 開鏈結構下的運動學模型建立 134 3.1.3 五軸機台運動學模型的建立 136 3.2 佈料頭座向的修正 142 3.3 功能實現及檢驗 145 第四章 GUI設計及功能實現 149 4.1 GUI開發工具的選擇 149 4.2 數據源的提取 153 4.3 App用戶界面的開發 156 4.3.1 熱刮棒旋轉匹配App的用戶界面設計 156 4.3.2 佈料路徑偏置App的用戶界面設計 162 第五章 結論與未來展望 165 參考文獻 169 附錄A 彈性3D成形技術機台部分 173 附錄B 本研究之分析與設計軟體程式檔案 177

    [1] Dilberoglu U M, Gharehpapagh B, Yaman U, Dolen M, “The role of additive manufacturing in the era of industry 4.0”, Procedia Manufacturing, 11, pp. 545-554, 2017.
    [2] Almada-Lobo, Francisco, “The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES)”, Journal of innovation management, 3(4), pp. 16-21, 2015.
    [3] “A third industrial revolution”, The Economist, 2012.
    [4] Kalva Shankar, “3d Printing -the Future of Manufacturing (the next Industrial Revolution)”, 2015.
    [5] Che-Chih Tsao, Ho-Hsin Chang, Meng-Hao Liu, Ho-Chia Chen, Yun-Tang Hsu, Pei-Ying Lin, Yih-Lin Chou, Ying-Chieh Chao, Yun-Hui Shen, Cheng-Yi Huang, Kai-Chiang Chan, Yi-Hung Chen, “Freeform Additive Manufacturing by vari-directional vari-dimensional material deposition”, Rapid Prototyping Journal, vol. 24, no. 2, pp. 379-394, 2018.
    [6] 簡得儒, 「彈性3D成型技術:幾何資料處理軟體開發」, 國立清華大學碩士論文, 2018
    [7] 陳正其, 「彈性變向佈料高速3D成形技術:工業用蠟之佈料系統與製程開發」, 國立清華大學碩士論文, 2019
    [8] 林霈穎, 「彈性3D成型技術:表面製程」, 國立清華大學碩士論文, 2018
    [9] Pandey Pulak M, N Venkata Reddy, Sanjay Govind Dhande, “Real time adaptive slicing for fused deposition modelling”, International Journal of Machine Tools and Manufacture, 43(1), pp. 61-71, 2003.
    [10] Lee K H, K Choi, “Generating optimal slice data for layered manufacturing”, The International Journal of Advanced Manufacturing Technology, 16(4), pp. 277-284, 2000.
    [11] Kanada, Yasusi, “Support-less Horizontal Filament-stacking by Layer-less FDM”, International Solid Free-form Fabrication Symposium 2015, vol. 8, 2015.
    [12] Yigit, Ismail Enes, I. Lazoglu, “Helical slicing method for material extrusion-based robotic additive manufacturing”, Progress in Additive Manufacturing, 4(3), pp. 225-232, 2019.
    [13] Yigit, Ismail Enes, I. Lazoglu, “Spherical slicing method and its application on robotic additive manufacturing”, Progress in Additive Manufacturing, 5(4), pp. 387–394, 2020.
    [14] Pan Y, Zhou C, Chen Y, Partanen J, “Multitool and multi-axis computer numerically controlled accumulation for fabricating conformal features on curved surfaces”, Journal of Manufacturing Science and Engineering, 136(3), 2014.
    [15] Cho J H, Kim J W, Kim K, “CNC tool path planning for multi-patch sculptured surfaces”, International Journal of Production Research, 38(7), pp. 1677–87, 2000.
    [16] Ding S, Mannan M A, Poo A N, Yang D C H, Han Z, “Adaptive iso-planar tool path generation for machining of free-form surfaces”, Computer-Aided Design, 35(2), pp. 141–53, 2003.
    [17] Feng Hsi-Yung, Huiwen Li, “Constant scallop-height tool path generation for three-axis sculptured surface machining”, Computer-Aided Design, 34(9), pp. 647–654, 2002.
    [18] 樂英, 韓慶瑤, 賈軍, 「複雜曲面數控加工刀具軌跡的生成技術」, 機床與液壓, 36(6), pp. 25-27, 2008
    [19] Wang Yu Michael, Xiaowei Sherrie Tang, “Five-axis NC machining of sculptured surfaces”, The International Journal of Advanced Manufacturing Technology, 15(1), pp.7-14, 1999.
    [20] Tournier Christophe, Emmanuel Duc, “Iso-scallop tool path generation in 5-axis milling”, The International Journal of Advanced Manufacturing Technology, 25(9-10), pp. 867–875, 2005.
    [21] Tournier Christophe, Emmanuel Duc, “A surface based approach for constant scallop heighttool-path generation”, The International Journal of Advanced Manufacturing Technology, 19(5), pp. 318-324, 2002.
    [22] Kim Taejung, “Constant cusp height tool paths as geodesic parallels on an abstract Riemannian manifold”, Computer-Aided Design, 39(6), pp. 477-489, 2007.
    [23] 李英碩, 楊帆, 袁兆奎, 「空間圓形擬合檢測新方法」, 測繪科學, 38(6), pp. 147-148, 2013
    [24] 匿名,「水臘製程-平面度」,奇鈺精密鑄造股份有限公司,2021年11月檢自,https://www.chips-casting.com/manufactures.html
    [25] 匿名,「技術資料-真直度&平面度&平行度公差」,景順實業股份有限公司,2021年11月檢自,https://www.cscasting.com/cht/advantages/技術資料.html
    [26] Denavit Jacques, Richard S Hartenberg, “A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices”, ASME J Applied Mechanics, 22(2), pp. 215–221, 1955.
    [27] Mahbubur R M D, Heikkala J, Lappalainen K, Karjalainen J A, “Positioning accuracy improvement in five-axis milling by post processing”, International Journal of Machine Tools and Manufacture, 37(2), pp. 223-226, 1997.
    [28] 鄭宇珣, 「積層製造PC Based 五軸CNC控制器之實現」, 國立清華大學碩士論文, 2017

    QR CODE