簡易檢索 / 詳目顯示

研究生: 許家豪
Hsu, Chhia-Hao
論文名稱: 利用四元靶材濺鍍製作銅銦鎵硒太陽能電池吸收層
Fabrication of Cu(In, Ga)Se2-based solar cells by sputtering from a quaternary target
指導教授: 賴志煌
Lai, Chih-Huang
口試委員: 羅文勳
闕郁倫
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 銅銦鎵硒濺鍍四元靶材太陽能電池一階段製程
外文關鍵詞: CIGS, sputtering, quaternary target, solar cells, one-step process
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅銦鎵硒 (Cu(In,Ga)Se2, CIGS) 是太陽能電池產業最具潛力的材料之一。本論文著力於單一四元靶材濺鍍製程的開發,此簡單的製程若能大面積化,在未來將有極高的工業價值。

    這份工作裡,我們採用升溫鍍膜的方式,以單一四元靶材、一階段濺鍍且不需額外硒供應,製作出 CIGS 太陽能電池吸收層,並完成完整元件。我們分別探討富銅與缺銅兩種不同成分靶材所製作出來的 CIGS 薄膜的電性、結構特性與元件特性。我們發現在銅缺乏的靶材中,薄膜的晶界鈍化十分重要,因此更進一步研究鈉元素摻雜在此製程裡對晶界鈍化以及元件效率的幫助。

    在富銅靶材的研究中,我們得到了 6\% 的轉換效率,過高的載子濃度與銅含量可能限制了元件的效率。於缺銅靶材的研究中,我們藉由控制鈉的摻雜,將轉換效率由最初的 0.2%,提升至超過 7.5%。


    Cu(In , Ga ) Se2 (CIGS)-based solar cell is one of the most promising candidates for future photo-voltaic application. In this thesis, we developed a one-step sputtering process from a single quaternary target. This straightforward process might be suitable for large-area application in industry.

    In this work, CIGS thin films were fabricated by sputtering from a single target at elevated temperature without additional selenium supply. Both film properties and device properties were investigated. Two targets with different composition were studied, namely, one copper-poor target and one copper-rich target. In the study concerning copper-poor target, we found that grain boundary passivation was quite critical. Hence, additional efforts were put into sodium incorporation.

    For the copper-rich target, the efficiency of 6\% was achieved. However, high carrier concentration and high copper concentration might limit the device performance. For the copper-poor target, the conversion efficiency was increased from 0.2\% to over 7.5\% by controlling sodium composition.

    1 引言 10 2 文獻回顧 12 2.1 太陽能電池原理 12 2.1.1 何謂太陽能電池 12 2.1.2 電流-電壓分析及電路模型 13 2.1.3 電容-電壓量測 18 2.1.4 p-n 接面太陽能電池的理論效率 20 2.2 銅銦鎵硒太陽能電池 21 2.2.1 CIGS 的晶體結構 22 2.2.2 CIGS 的光學性質 24 2.2.3 CIGS 內的載子復合機制 25 2.2.4 銅銦鎵硒太陽能電池的結構與製程 27 2.2.5 CIGS 薄膜內的本質摻雜 29 2.2.6 鈉效應、大氣退火與氧效應 31 2.2.7 電流阻礙現象 32 3 分析儀器及實驗方法 35 3.1 實驗流程 35 3.2 實驗設備介紹 36 3.2.1 Solar-metal 以及 Solar-Zero 濺鍍系統 36 3.2.2 X 光繞射儀 37 3.2.3 冷場發電子顯微鏡 38 3.2.4 太陽光模擬器以及 Keithley 4200SCS 39 3.2.5 外部量子效率量測儀 39 3.2.6 拉曼光譜分析儀 39 4 結果與討論 41 4.1 以銅 25% 靶材製作的 CIGS 薄膜性質 41 4.1.1 改變工作壓力對膜層性質的影響 41 4.1.2 改變鍍膜溫度對膜層性質的影響 49 4.1.3 小結: 以銅25% 靶材製作 CIGS 太陽能電池 52 4.2 以銅18% 靶材製作的 CIGS 薄膜性質 53 4.2.1 不同工作壓力對薄膜性質的影響 53 4.3 鈉與晶界鈍化在銅 18% 靶材製作之薄膜上的效應 58 4.3.1 在硒氣氛下退火對膜層的影響 59 4.3.2 以鉬電極的工作壓力控制鈉的擴散 60 4.3.3 後退火處理對膜層的影響 60 4.3.4 在鈉玻璃上退火與硼玻璃上退火的比較 63 4.3.5 使用氟化鈉直接摻雜鈉進入 CIGS 薄膜 66 4.4 小結:銅含量 18% 靶材與鈉效應在缺銅薄膜內的作用 67 5 結論 68

    [1] Philip Jackson, Dimitrios Hariskos, Erwin Lotter, Stefan Paetel, Roland Wuerz, Richard Menner, Wiltraud Wischmann, and Michael Powalla. New world record efficiency for Cu(In, Ga)Se2 thinfilm solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011.

    [2] J. H. Ermer, R. B. Love, A. K. Khanna, S. C. Lewis, and F. Cohen. CdS/CuInSe2 junctions fabricated by dc magnetron sputtering of Cu2 Se and In2 Se3 . In 18th Photovoltaic Specialists Conference, volume 1, page 1655–1658, 1985.

    [3] N. Romeo, V. Canevari, G. Sberveglieri, A. Bosio, and L. Zanotti. Growth of large-grain CuInSe2 thin films by flash-evaporation and sputtering. Solar Cells, 16:155–164, January 1986.

    [4] T. Unold, I. Sieber, and K. Ellmer. Efficient CuInS solar cells by reactive magnetron sputtering. Applied physics letters, 88:213502, 2006.

    [5] T. Nakada, K. Migita, S. Niki, and A. Kunioka. Microstructural characterization for Sputter-Deposited CuInSe2 films and photovoltaic devices. Jpn. J. Appi. Phys. Vol, 34(9A Pt 1):4715–4721, 1995.

    [6] S. S Hegedus and W. N Shafarman. Thin-film solar cells: device measurements and analysis. Progress in Photovoltaics: Research and Applications, 12(2-3):155–176, 2004.

    [7] W. Shockley and H. J Queisser. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32(3):510–519, 1961.

    [8] A. V. Shah, R. Platz, and H. Keppner. Thin-film silicon solar cells: A review and selected trends. Solar energy materials and solar cells, 38(1):501–520, 1995.

    [9] Martin A Green, Keith Emery, Yoshihiro Hishikawa, and Wilhelm Warta. Solar cell efficiency tables (version 37). Progress in Photovoltaics: Research and Applications, 19(1):84–92, January 2011.

    [10] T Schlenker, M.Luis Valero, H.W Schock, and J.H Werner. Grain growth studies of thin Cu(In, Ga)Se2 films. Journal of Crystal Growth, 264(1-3):178–183, 2004.

    [11] Chun-Sheng Jiang, F. S. Hasoon, H. R. Moutinho, H. A. Al-Thani, M. J. Romero, and M. M. Al-Jassim. Direct evidence of a buried homojunction in Cu(In, Ga)Se2 solar cells. Applied Physics Letters, 82(1):127, 2003.

    [12] R Herberholz, U Rau, HW Schock, T Haalboom, T Godecke, F Ernst, C Beilharz, KW Benz, and D Cahen. Phase segregation, cu migration and junction formation in Cu(In, Ga)Se2 . European Physical Journal-Applied Physics, 6(2):131–139, May 1999.

    [13] Adolf Goetzberger, Christopher Hebling, and Hans-Werner Schock. Photovoltaic materials, history, status and outlook. Materials Science and Engineering: R: Reports, 40(1):1–46, 2003.

    [14] Su-Huai Wei, S. B. Zhang, and Alex Zunger. Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties. Applied Physics Letters, 72(24):3199, 1998.

    [15] P. Paul Ramesh, O.Md. Hussain, S. Uthanna, B. Srinivasulu Naidu, and P. Jayarama Reddy. Photovoltaic performance of p-AgInSe2 /n-CdS thin film heterojunctions. Materials Letters, 34(3-6):217–221, 1998. 70

    [16] P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire, and W. N. Shafarman. Cu(In1-x , Alx )Se2 thin films and solar cells. Journal of Applied Physics, 91(12):10153, 2002.

    [17] V. Alberts, J. Titus, and R. W. Birkmire. Material and device properties of single-phase Cu(In, Ga)(Se, S)2 alloys prepared by selenization/sulfurization of metallic alloys. Thin Solid Films, 451:207–211, 2004.

    [18] U. Rau and H.W. Schock. Electronic properties of Cu(In, Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges. Applied Physics A: Materials Science & Processing, 69(2):131–147, August 1999.

    [19] John H. Scofield, A. Duda, D. Albin, B. L. Ballard, and P. K. Predecki. Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films, 260(1):26–31, 1995.

    [20] T. Wada, N. Kohara, S. Nishiwaki, and T. Negami. Characterization of the Cu(In, Ga)Se2 /Mo interface in CIGS solar cells. Thin Solid Films, 387(1-2):118–122, 2001.

    [21] H. A Al-Thani, F. S Hasoon, M. Young, S. Asher, J. L Alleman, M. M Al-Jassim, and D. L Williamson. The effect of Mo back contact on na out-diffusion and device performance of Mo/Cu(In, Ga)Se2 /CdS/ZnO solar cells. In Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, page 720–723, 2002.

    [22] I Repins, MA Contreras, B Egaas, C DeHart, J Scharf, CL Perkins, B To, and R Noufi. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Progress in Photovoltaics, 16(3):235–239, May 2008.

    [23] Andrew M. Gabor, John R. Tuttle, Michael H. Bode, Amy Franz, Andrew L. Tennant, Miguel A. Contreras, Rommel Noufi, D. Garth Jensen, and Allen M. Hermann. Band-gap engineering in Cu(In, Ga)Se2 thin films grown from (In, Ga)2 Se3 precursors. Solar Energy Materials and Solar Cells, 41-42:247–260, 1996.

    [24] Bulent M. Basol. Cu(In, Ga)Se2 thin films and solar cells prepared by selenization of metallic precursors. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14(4):2251, July 1996.

    [25] Tokio Nakada and Masayuki Mizutani. 18% efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers. Japanese Journal of Applied Physics, 41(Part 2, No. 2B):L165–L167, February 2002.

    [26] S. Spiering, A. Eicke, D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot. Large-area Cd-free CIGS solar modules with In2 S3 buffer layer deposited by ALCVD. Thin Solid Films, 451-452:562–566, 2004.

    [27] D. Hariskos, S. Spiering, and M. Powalla. Buffer layers in Cu(In, Ga)Se2 solar cells and modules. Thin Solid Films, 480-481:99–109, 2005.

    [28] S. B. Zhang, S. H Wei, A. Zunger, and H. Katayama-Yoshida. Defect physics of the CuInSe2 chalcopyrite semiconductor. Physical Review B, 57(16):9642, 1998.

    [29] S. Siebentritt, M. Igalson, C. Persson, and S. Lany. The electronic structure of chalcopyrites—bands, point defects and grain boundaries. Progress in Photovoltaics: Research and Applications, 18(6):390–410, 2010.

    [30] S. H Wei, S. B. Zhang, and A. Zunger. Effects of Na on the electrical and structural properties of CuInSe2 . Journal of applied physics, 85(10):7214–7218, 1999.

    [31] David Cahen and Rommel Noufi. Defect chemical explanation for the effect of air anneal on CdS/CuInSe2 solar cell performance. Applied Physics Letters, 54(6):558–560, February 1989.

    [32] L. Kronik, D. Cahen, and H. W Schock. Effects of sodium on polycrystalline Cu(In, Ga)Se2 and its solar cell performance. Advanced Materials, 10(1):31–36, 1998.

    [33] U. Rau, D. Braunger, R. Herberholz, H. W. Schock, J.-F. Guillemoles, L. Kronik, and David Cahen.
    Oxygenation and air-annealing effects on the electronic properties of Cu(In, Ga)Se2 films and devices. Journal of Applied Physics, 86(1):497, 1999.

    [34] A. Niemegeers and M. Burgelman. Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells. Journal of applied physics, 81:2881, 1997.

    [35] M. Igalson, A. Urbaniak, K. Macielak, and M. Tomassini. Barriers for current transport in CIGS structures. In 2011 PVSC Proceeding, 2011.

    [36] D. Rudmann, D. Bremaud, H. Zogg, and A. N. Tiwari. Na incorporation into Cu(In, Ga)Se2 for high-efficiency flexible solar cells on polymer foils. Journal of Applied Physics, 97(8):084903, 2005.

    [37] R. Sundaramoorthy, F. J. Pern, A. L. Lazcano, S. Glynn, C. DeHart, B. To, J. Pankow, and T. Gessert. Glass cleaning and its effects on the damp-heat stability of molybdenum on soda-lime glass. In Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, page 002506–002511, 2010.

    [38] Chuan-Ming Xu, Xiao-Liang Xu, Jun Xu, Xiao-Jie Yang, Jian Zuo, Ning Kong, Wen-Hao Huang, and Hong-Tu Liu. Composition dependence of the Raman A1 mode and additional mode in tetragonal Cu–In–Se thin films. Semiconductor Science and Technology, 19(10):1201–1206, October 2004.

    [39] X. Fontane, V. Izquierdo-Roca, L. Calvo-Barrio, J. Alvarez-Garcia, A. Perez-Rodriguez, J. R. Morante, and W. Witte. In-depth resolved raman scattering analysis of secondary phases in cu-poor CuInSe2 based thin films. Applied Physics Letters, 95(12):121907, 2009.

    [40] A. E. Delahoy, J. Bruns, A. Ruppert, M. Akhtar, L. Chen, and Z. J. Kiss. Thin film CIGS photovoltaic technology. Phase II Annual Report, NREL/SR-520-28786, 2002.

    [41] G.A.M. Hurkx, D.B.M. Klaassen, and M.P.G. Knuvers. A new recombination model for device simulation including tunneling. Electron Devices, IEEE Transactions on, 39(2):331–338, 1992.

    [42] Philip Jackson, Roland W ̈rz, Uwe Rau, Julian Mattheis, Matthias Kurth, Thomasu Schlotzer, Gerhard Bilger, and Jurgen H Werner. High quality baseline for high effiociency, Cu(In1-x , Gax )Se2 solar cells. Progress in Photovoltaics: Research and Applications, 15(6):507–519, September 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE