簡易檢索 / 詳目顯示

研究生: 鄭靜怡
論文名稱: 以新穎分子探針解析活體多巴胺神經元之多巴胺動態
Utilizing a novel molecular probe to analyze dopamine dynamics in vivo
指導教授: 桑自剛
口試委員: 桑自剛
徐瑞洲
陳盛良
張兗君
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 41
中文關鍵詞: 多巴胺探針綠色螢光蛋白
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多巴胺(DA)是一種重要的神經傳導物質,主要負責運動控制,學習和認知等功能。 多巴胺系統參與在許多人類疾病當中,包括帕金森氏症(PD)。然而,帕金森氏症的致病機制仍不清楚。為了確定細胞中多巴胺濃度的不平衡是否涉及帕金森氏症的發病機制,有必要建立一個適合的探針,以直接檢測活體細胞內的多巴胺。我們利用單胺氧化酶(MAO)其獨特的光譜特徵與綠色螢光蛋白結合,作為探針的設計。單胺氧化酶在氧化態時,可以吸收400-500nm的綠色螢光蛋白激發光,氧化多巴胺之後,這種特性便會消失,與單胺氧化酶結合的螢光蛋白便得以發光。因此,引發的螢光蛋白訊號可以作為多巴胺濃度的讀數。我們的實驗結果顯示,間接增加細胞內多巴胺濃度可以激發探針中的綠色螢光蛋白發光,表示該探針可以有效的偵測多巴胺變化。運用多巴胺探針,未來將能確定帕金森氏症和其他多巴胺系統相關疾病中多巴胺濃度變化所扮演的角色。


    Dopamine (DA) is an essential neurotransmitter that mainly involved in motor control, learning and cognitive association. The dysfunction of DA system links to several human diseases, including Parkinson’s disease (PD). However, the pathogenic mechanism of this disease is still unclear. To determine whether the imbalance of cellular DA level is involved in PD pathogenesis, it is essential to develop a genetically amenable probe that can directly detect intracellular DA in vivo. Here we utilize the unique spectrum feature of MAO B to design a MAO B-split GFP fusion protein as a DA probe. MAO B is a redox enzyme that catalyses catecholamine oxidation. In the absence of substrate, MAO B is at oxidized form that can absorb 400-500nm spectrums. Upon DA binding to MAO B, MAO B is reduced and losses this absorption property. Therefore, the elicit of GFP signal can serve as a readout of DA. We show that indirect modulations of cellular DA can trigger GFP fluorescence emission of the probe, suggesting this probe is feasible for DA detection. By applying this probe to PD models, we may be able to determine whether cellular DA imbalance is responsible for regional vulnerability of PD and other DA system related psychiatric disorders.

    ABSTRACT I 摘要 II ACKNOWLEDGEMENT III TABLE OF CONTENTS V LIST OF FIGURES VI INTRODUCTION 1 METHODS 6 1. Construction of plasmids 6 2. Cell culture 7 3. Transfection 7 4. Protein extraction 7 5. MAO activity assay 8 6. SDS Gel Electrophoresis and Western Blotting 8 7. Immunohistochemistry and Confocal imaging 9 8. L-dopa treatment and reserpine treatment 10 9. TUNEL assay 10 10. Flow cytometry 11 RESULTS 12 1. Design of probes possessing high MAO activities in HEK cells 12 2. MMG1 locates on mitochondria with its C terminal facing cytosol, where the split GFP can be reconstituted 14 3. Expressing MMG1 does not cause cell death in cells. 15 4. MMG1 can elicit GFP fluorescence upon L-DOPA treatment 16 DISCUSSION 18 1. Membrane contact could be critical for MAO enzyme activity 18 2. GFP needs to be close to MAO B active site to fulfill the shield effect 18 3. MMG1 possess high enzyme activity and can detect DA difference 19 4. Future works and potential applications 19 FIGURES 21 APPENDIX 36 REFERENCES 38

    Berke, J. D., & Hyman, S. E. (2000). Addiction, dopamine, and the molecular mechanisms of memory. Neuron, 25(3), 515-32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10774721
    Binda, C., Hubálek, F., Li, M., Edmondson, D. E., & Mattevi, A. (2004). Crystal structure of human monoamine oxidase B, a drug target enzyme monotopically inserted into the mitochondrial outer membrane. FEBS Letters, 564(3), 225-228. doi:10.1016/S0014-5793(04)00209-1
    Binda, C., Newton-Vinson, P., Hubálek, F., Edmondson, D. E., & Mattevi, A. (2002). Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nature structural biology, 9(1), 22-6. doi:10.1038/nsb732
    Cabantous, S., Terwilliger, T. C., & Waldo, G. S. (2005). Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nature biotechnology, 23(1), 102-7. doi:10.1038/nbt1044
    Caudle, W. M., Richardson, J. R., Wang, M. Z., Taylor, T. N., Guillot, T. S., McCormack, A. L., Colebrooke, R. E., et al. (2007). Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(30), 8138-48. doi:10.1523/JNEUROSCI.0319-07.2007
    Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., & Smith, A. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113(5), 643-55. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12787505
    Chen, L., Ding, Y., Cagniard, B., Van Laar, A. D., Mortimer, A., Chi, W., Hastings, T. G., et al. (2008). Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(2), 425-33. doi:10.1523/JNEUROSCI.3602-07.2008
    Edmondson, D. E., Binda, C., Wang, J., Upadhyay, A. K., & Mattevi, A. (2009). Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry, 48(20), 4220-30. doi:10.1021/bi900413g
    Emdadul Haque, M., Asanuma, M., Higashi, Y., Miyazaki, I., Tanaka, K.-ichi, & Ogawa, N. (2003). Apoptosis-inducing neurotoxicity of dopamine and its metabolites via reactive quinone generation in neuroblastoma cells. Biochimica et biophysica acta, 1619(1), 39-52. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12495814
    Giros, B., & Caron, M. G. (1993). Molecular characterization of the dopamine transporter. Trends in pharmacological sciences, 14(2), 43-9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8480373
    Greenblatt, E. J., Olzmann, J. a, & Kopito, R. R. (2011). Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nature structural & molecular biology, 18(10), 1147-52. Nature Publishing Group. doi:10.1038/nsmb.2111
    Gubernator, N. G., Zhang, H., Staal, R. G. W., Mosharov, E. V., Pereira, D. B., Yue, M., Balsanek, V., et al. (2009). Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science (New York, N.Y.), 324(5933), 1441-4. doi:10.1126/science.1172278
    Hall, S. E., Roberts, K., & Vaidehi, N. (2009). Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction. Journal of molecular graphics & modelling, 27(8), 944-50. doi:10.1016/j.jmgm.2009.02.004
    Hastings, T. G. (2009). The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. Journal of bioenergetics and biomembranes, 41(6), 469-72. doi:10.1007/s10863-009-9257-z
    Hjemdahl, P. (1984). Catecholamine measurements by high-performance liquid chromatography. The American journal of physiology, 247(1 Pt 1), E13-20. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6377918
    Howes OD et al. (n.d.). Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. Am J Psychiatry.
    Laviolette, S. R. (2007). Dopamine modulation of emotional processing in cortical and subcortical neural circuits: evidence for a final common pathway in schizophrenia? Schizophrenia bulletin, 33(4), 971-81. doi:10.1093/schbul/sbm048
    Li, H., Waites, C. L., Staal, R. G., Dobryy, Y., Park, J., Sulzer, D. L., & Edwards, R. H. (2005). Sorting of vesicular monoamine transporter 2 to the regulated secretory pathway confers the somatodendritic exocytosis of monoamines. Neuron, 48(4), 619-33. doi:10.1016/j.neuron.2005.09.033
    Obeso, J. A., Rodríguez-Oroz, M. C., Benitez-Temino, B., Blesa, F. J., Guridi, J., Marin, C., & Rodriguez, M. (2008). Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Movement disorders : official journal of the Movement Disorder Society, 23 Suppl 3, S548-59. doi:10.1002/mds.22062
    Peaston, R. T., & Weinkove, C. (2004). Measurement of catecholamines and their metabolites. Annals of clinical biochemistry, 41(Pt 1), 17-38. doi:10.1258/000456304322664663
    Pothos, E., Desmond, M., & Sulzer, D. (1996). L-3,4-dihydroxyphenylalanine increases the quantal size of exocytotic dopamine release in vitro. Journal of neurochemistry, 66(2), 629-36. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8592133
    Rebrin, I., Geha, R. M., Chen, K., & Shih, J. C. (2001). Effects of carboxyl-terminal truncations on the activity and solubility of human monoamine oxidase B. The Journal of biological chemistry, 276(31), 29499-506. doi:10.1074/jbc.M100431200
    Robinson, D. L., Venton, B. J., Heien, M. L. a V., & Wightman, R. M. (2003). Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clinical chemistry, 49(10), 1763-73. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14500617
    Rojo, M., Legros, F., Chateau, D., & Lombès, A. (2002). Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. Journal of cell science, 115(Pt 8), 1663-74. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11950885
    Sang, T.-K., Chang, H.-Y., Lawless, G. M., Ratnaparkhi, A., Mee, L., Ackerson, L. C., Maidment, N. T., et al. (2007). A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. The Journal of neuroscience : the official journal of the Society for Neuroscience, 27(5), 981-92. doi:10.1523/JNEUROSCI.4810-06.2007
    Sang, T.-K., & Jackson, G. R. (2005). Drosophila models of neurodegenerative disease. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics, 2(3), 438-46. doi:10.1602/neurorx.2.3.438
    Shapiro, M. G., Westmeyer, G. G., Romero, P. a, Szablowski, J. O., Küster, B., Shah, A., Otey, C. R., et al. (2010). Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nature biotechnology, 28(3), 264-70. doi:10.1038/nbt.1609
    Son, S.-Y., Ma, J., Kondou, Y., Yoshimura, M., Yamashita, E., & Tsukihara, T. (2008). Structure of human monoamine oxidase A at 2.2-A resolution: the control of opening the entry for substrates/inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5739-44. doi:10.1073/pnas.0710626105
    Stokes, a H., Hastings, T. G., & Vrana, K. E. (1999). Cytotoxic and genotoxic potential of dopamine. Journal of neuroscience research, 55(6), 659-65. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10220107
    Sulzer, D., Bogulavsky, J., Larsen, K. E., Behr, G., Karatekin, E., Kleinman, M. H., Turro, N., et al. (2000). Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11869-74. doi:10.1073/pnas.97.22.11869
    Torres, G. E., Gainetdinov, R. R., & Caron, M. G. (2003). Plasma membrane monoamine transporters: structure, regulation and function. Nature reviews. Neuroscience, 4(1), 13-25. doi:10.1038/nrn1008
    Vickrey, T. L., Condron, B., & Venton, B. J. (2009). Detection of endogenous dopamine changes in Drosophila melanogaster using fast-scan cyclic voltammetry. Analytical chemistry, 81(22), 9306-13. doi:10.1021/ac901638z
    Wise, R. A. (2004). Dopamine, learning and motivation. Nature reviews. Neuroscience, 5(6), 483-94. doi:10.1038/nrn1406

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE