簡易檢索 / 詳目顯示

研究生: 陳亭任
Chen, Ting-Zen
論文名稱: 橫向高電壓4H-SiC Double RESURF金氧半場效電晶體設計與製作
The Design and Fabrication of Lateral High Voltage 4H-SiC Double RESURF MOSFETs
指導教授: 黃智方
Huang, Chih-Fang
口試委員: 蔡銘進
李坤彥
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 64
中文關鍵詞: 4H-SiC高電壓場效電晶體橫向功率元件
外文關鍵詞: SiC, High voltage, MOSFET, Lateral power device
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this work, 4H-SiC lateral double RESURF MOSFETs on a semi-insulating substrate are fabricated. With the double RESURF structure , the depletion region can expand from both the upper side and the lower side of the drift region simultaneously, which makes the dose of the drift region twice that of single RESURF structure without degrading the breakdown voltage. Therefore, the drift region resistance can be reduced by half. And by using the HPSI substrate, the charge compensation can be easily controlled without the substrate-assisted-depletion effect, and the vertical breakdown by the epi thickness is no longer a limitation.
    However, in the experiment, because the N drift region is too heavily doped and can not be completely depleted before the gate oxide breaks down. This causes the premature breakdown of the devices and the maximum drain voltage is only about 100V. In the forward conduction, the concentration of the p-type body is too high and which causes a high threshold voltage and the high channel resistance. The best achieved specific on-resistance is 162 mΩ-cm2 with 3 μm channel length and 20 μm drift region length when the electric field in the gate oxide is limited to 3 MV/cm.


    本篇論文重點為在半絕緣基板上製作4H-SiC橫向高電壓double RESURF金氧半場效電晶體。在double RESURF結構下,空乏區可同時在漂移區外部及內部展開,這代表在漂移區內的摻雜劑量可提高到single RESURF結構的兩倍而不至於降低崩潰電壓,因此導通電阻可大幅地降低。而將元件製作在高純度半絕緣基板上,一方面可防止基板協助空乏效應的發生,使電荷平衡變得容易控制;另一方面,垂直方向的崩潰電壓將不再受到磊晶層厚度的限制。
    然而,在本次實驗中,過高的漂移區濃度使漂移區無法在閘極氧化層崩潰前被完全空乏,使元件提前崩潰在汲極電壓約100伏特左右。在正向導通特性方面,因採用較高濃度的磊晶層,導致元件擁有較高的臨界電壓與通道電阻。量測到最佳導通電阻為162 mΩ-cm2,發生在通道長度3 μm 、漂移區長度20 μm的元件上,在閘極氧化層電場限制在3 MV/cm。

    目錄 摘要 I 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 序論 1 1.1 前言 1 1.2 碳化矽材料簡介 2 1.3 文獻回顧與設計理論 5 1.3.1 Baliga’s Figure Of Merit 5 1.3.2 超接面 5 1.3.3 RESURF理論 6 1.3.4 SOI結構 9 1.3.5場平板 10 1.4 論文大綱 10 第二章 元件設計與模擬 12 2.1 元件結構與設計 12 2.1.1元件結構設計 12 2.1.2晶片結構 14 2.2 元件模擬 15 2.2.1 Single RESURF 15 2.2.2 Double RESURF 16 2.2.3 場平板 17 2.3 光罩設計 18 第三章 元件製程 24 3.1一般clean 24 3.2 定義對準 24 3.3 離子佈植 25 3.3.1 N型漂移區離子佈植 26 3.3.2 p-top layer離子佈植 28 3.3.3 汲極、源極區域離子佈植 30 3.3.4基極區域的離子佈植 32 3.4 電性活化 33 3.5元件隔離 35 3.6 閘極氧化層 36 3.7 歐姆接觸與閘極金屬 36 3.8 後段製程 39 第四章 量測結果與分析 41 4.1測試元件量測分析 41 4.1.1 TLM 41 4.1.2 四點探針 45 4.1.3 MOS電容 47 4.1.4 測試MOSFET 49 4.2高壓元件量測分析 52 4.2.1 Power MOSFET正向導通特性 52 4.2.2 Power MOSFET崩潰特性 56 4.2.3崩潰特性改良製程與量測 58 第五章 結論與未來改善 62 文獻回顧 63

    [1] H. S. Lee, ”High power bipolar junction transistors in silicon car-bide,” ISRN KTH/EKT/FR-2005/6-SE.
    [2] C.-M. Zetterling, Process Technology for Silicon Carbide Devices,
    ser. EMIS Processing Series. London, U.K.: IEE, 2002..
    [3] R. Powell and L.B. Rowland, “SiC material-progress status and po-tential roadblocks”, IEEE Proc., vol. 60, pp. 942-955, 2002
    [4] K. Shenai, R. S. Scott, and B. J. Baliga, “Optimum semiconductors for high-power electronics”, IEEE Trans. Electron Device, vol. 36, pp. 1811, 1989.
    [5] T. Fujihtira, “Theory of semiconductor superjunction devices”, Jpn.J.Appl.Phys., Vol. 36, pp.6254-6262, 1997.
    [6] G. Deboy, M. März, J. -P. Stengl, H. Strack, J. Tihanyi, and H. We-ber,“A new generation of high voltage MOSFETs breaks the limit line of silicon,” in IEDM Tech. Dig., pp. 683–685, 1998
    [7] J.A. Appels and H.M.J. Vas, “High voltage thin layer devic-es(RESURF devices)”, IEDM Tech. Dig., pp. 238, 1979
    [8] Mohamed Imam , Mohammed Quddus, Jim Adams, and Zia Hoss-ain ,” Efficacy of charge sharing in reshaping the surface electric field in high-voltage lateral RESURF devices”, IEEE Trans. Electron Device , VOL. 51, NO. 1, JANUARY 2004
    [9] H. Vaes and J. Appels, “High voltage, high current lateral devices,” in IEDM Tech. Dig., pp. 87–90, 1980.
    [10]Q. Lu, P. Ratnam, C. Andre, and T. Salama, "High voltage silicon on insulator (SOI) MOSFETs", Proc. ISPSD, pp.36 - 39 , 1991.
    [11]S. G. Nassif-Khalil and C.A.T. Salama, “Super junction LDMOST in silicon-on-sapphire technology (SJ-LDMOST),” in Proc.ISPSD, pp.81–84, 2002.
    [12]B. J. Baliga, "Fundamentals of Power Semiconductor Devices," Springer, 2008.
    64
    [13]K. Chatty, S. Banerjee, T. P. Chow, and R. J. Gutmann, “High-voltage
    lateral RESURF MOSFETs on 4H-SiC,” IEEE Electron Device Lett.,
    vol. 21, pp. 356–358, July 2000.
    [14]M. A. Capano, R. Santhakumar, R. Venugopal, M. R. Melloch, and J. A.Cooper, Jr., J. Electron. Mater. 29, No.2, 2000.
    [15]M. A. Capano, S.-H. Ryu, M. R. Melloch, and J. A. Cooper, Jr., "Dopant activation and surface morphology of ion implanted 4H- and 6H-silicon carbide", J. Electron. Mater., vol. 27, p.370, 1998.
    [16]Y. Negoro, K. Katsumoto, T. Kimoto, and H. Matsunami, “Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC (0001),” J. Appl.Phys., vol. 96, no. 1, pp. 224–228, Jul. 2004.
    [17]D. K. Schroder, Semiconductor Material and Device Characteriza-tion, 1998.
    [18]D.A.Neamen , “Semiconductor physics and devices” third edition , 2003.
    [19]A. Perez-Tomas , P. Godignon , N. Mestres and J. Millan "A field-effect electron mobility model for SiC MOSFETs including high density of traps at the interface", Microelectron. Eng., vol. 83, p.440 , 2006.
    [20]C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi, "A physically based mobility model for numerical simulation of nonplanar devic-es", IEEE Trans. Computer-Aided Design, vol. 7, pp.1164 - 1170 , 1988.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE