簡易檢索 / 詳目顯示

研究生: 吳憲俊
Wu, Hsien-Chun
論文名稱: Solvent-Induced Crack and Crack Healing in Poly(Methyl Methacrylate)
有機溶劑在聚甲基丙基酸甲酯裡引發裂紋與裂紋癒合之行為研究
指導教授: 李三保
Lee, Sanboh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 53
中文關鍵詞: 裂縫2-乙基己醇甲醇溶劑引發應力聚甲基丙基酸甲酯
外文關鍵詞: crack, 2-ethylhexyl alcohol, methanol, solvent-induced stress, PMMA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的文獻裡,高分子擴散行為和溶劑在高分子內引發的硬力已經被深入研究。在這個實驗裡,我們利用重量、厚度與傅立葉紅外光轉換光譜(PMMA)發現2-己基乙醇可以快速的將甲醇從聚甲基丙基酸甲酯(PMMA)抽出,同時在PMMA表面產生裂紋。我們利用光學顯微鏡(OM)觀察在不同的實驗參數條件下對於裂紋的影響(如:溶劑的浸泡時間與浸泡溫度),不同的浸泡時間與浸泡溫度會造成不同的裂紋密度與深度。我們藉由拉伸試驗將裂紋對PMMA的破壞程度量化並且利用電腦軟體ImageJ計算裂紋密度與量測裂紋深度。
    溶劑引發高分子裂縫癒合在過去也已經被廣泛的研究,在這個實驗當中我們也用甲醇使裂縫癒合並用拉伸試驗量化癒合的程度。我們發現PMMA可以癒合到近乎原始的強度。在本實驗最後的部份,我們會在甲醇癒合的部份加入染劑使裂縫癒合完後裂縫會有顏色。這個過程未來也許可以被應用於微顆粒在PMMA表面的嵌鑲。


    Diffusion in polymer and solvent-induced stresses has been well
    investigated in the past. In this experiment, we found that 2-ethylhexyl alcohol
    could rapidly extract methanol from PMMA by mass measurement, thickness
    measurement and FTIR spectrum. Crack formed during methanol desorption.
    We observed the crack growth with optical microscope (OM) and studied
    different parameters affected crack growth like immersion tempersture and
    immersion time. Different immersion times and immertion temperatures
    carried out different crack densities and crack depths. We utilized tensile test
    to quantify the extent of crack destruction on specimens and the software
    ImageJ to calculate the crack density and crack depth.
    Crack healing in PMMA with solvent has been proposed. We heals the
    cracked specimen with methanl at different temperatures and utilized tensile
    test to quantify the extent of crack healing. The healing rate increases with
    increasing temperature. Finally. we used mixture of methanol with dye to heal
    the cracked specimen which is possiblely applied for embedding particles in
    polymer.

    Content 中文摘要: ...........................................................6 Abstract: .............................................................7 1.Introduction. ....................................................... 8 2.Experimental procedure:. ................................ 12 2.1.Material:. ............................................................................12 2.2.Sample Preparation:. ........................................................12 2.3.Methanol absorption: .................................................... 13 2.4.Methanol desorption:. ......................................................14 2.5.Surface morphology by SPM (Scanning Probe Microscope):. .......................................................................... 14 2.6.Mass measurement: .........................................................14 2.7.Thickness measurement: ................................................ 15 2.8.FTIR spectrum measurement: .........................................15 2.9.Observation of Crack pattern and cross section view of crack :. ..................................................................................... 16 2.10.Crack density and crack depth calculation: ................ 16 2.11.Tensile test:. ....................................................................17 2.12.DSC(Differential Scanning Calorimeter,) measurement ..................................................................................................17 2.13.Methanol induced crack healing. ..................................18 2.14.Healing with dye. ............................................................19 3.Result and discussion. .................................... 20 3.1.Rapid desorption of methanol by 2-ethylhexyl alcohol and crack formation: ..............................................................20 3.2.Mass measurement and thickness measurement during methanol desorption:. ............................................................20 3.3.FTIR spectrum measurement: .........................................21 3.4.Mechanism of Crack formation: ......................................21 3.5.Relationship between crack growth and immersion parameter of 2-ethylhexyl alcohol:. ...................................... 22 3.6.Crack pattern varies with immersion time of 2- ethylhexyl alcohol:. ................................................................ 22 3.7.Crack depth verus immersion time of 2-ethylhexyl alcohol:. ...................................................................................23 3.8.Crack growth verus immersion temperature of 2- ethylhexyl alcohol:. ................................................................ 24 3.9.Relationship between amount of methanol absorption and crack growth. ...................................................................25 3.10.Crack pattern varies with immersion time of methanol: ..................................................................................................26 3.11.Crack growth verus immersion time of methanol:. .....26 3.12.Crack healing and application. ..................................... 28 4.Figure. ............................................................... 30 Figure 1: Dimension of tensile specimen ............................................. 30 Figure 2: desorption of methanol in specimen versus time during immersion in 2-ethylhexyl alcohol at different temperatures(m0≈ 2.3 g, 3 before immeres in 2- ethylhexyl alcohol, specimen was immersed in methanol for 25min at 50°C) ................................................................ 31 Figure 3: thickness decrement of PMMA immersed in methanol during immersion in 2-ethylhexyl alcohol at different temperatures (B0~3.0 mm, before immersion in tensile 2- ethylhexyl alcohol, specimen was immersed in methanol for 25min at 50°C) ............................................32 Figure. 4: FTIR spectrum of PMMA for absorption and desorption of methanol.. ............................................................................................ 33 Figure 5: crack growth of PMMA varies with increasing immersion time of in 2-ethylhexyl alcohol at 30°C.(PMMA was immersed in methanol for 25 min at 50°C befroe immersed in 2-ethylhexyl alcohol) .............. 34 Figure 6: crack densityh of PMMA varies with increasing immersion time of in 2-ethylhexyl alcohol at 30°C.(PMMA was immersed in methanol for 25 min at 50°C befroe immersed in 2-ethylhexyl alcohol) .............................................................................................................35 Figure 7: crack growth with time of immersion in 2-ethylhexyl alcohol at 30°C(square specimen; PMMA was immersed in methanol for 25 min at 50°C befroe immersed in 2-ethylhexyl alcohol) (cross-section view) .............................................................................................................36 Figure 8: Crack pattern varies with immersion time in methanol and in immersed in 2-ethylhexyl alcohl at different immersion temperature for 60 min.. ................................................................................................ 37 Figure 9: crack density as a function of immersion times of methanol and different immersion temperatures of 2- ethylhexyl alcohol. ...........38 Figure 10: SPM surface scanning of crack (tensile specimen; PMMA was immersed in methanol for 1 min at 50°C and then immersed in 2EA for 60 min at 50°C). ...................................................................... 39 Figure 11: Tensile strength varies with time of immersion in methanol and immersion temperature in 2-ethylhexyl alcohol. ............................40 Fig. 12: side view of crack at different immersion times in methanol and different immersion temperatures in 2EA. ............................................41 Figure 13: Crack depth varies with immersion time in methanol and immersion temperature in 2-ethylhexyl alcohol ....................................42 Figure. 14: DSC measurement of surface thin film of PMMA absorbed methanol for 5 min ............................................................................... 43 Figure 15: Tensile stress versus immersion time in methanol healing at different temperature.. ..........................................................................44 4 Figure 16 Tensile stress versus immersion time in methanol at 60°C under different cracking condition (5 min, 15 min, 40 min immersion in methanol at 50°C then 60 min immersion in 2EA at 30°C) ...................45 Figure 17:. ..............Crack healing; (a) cracked specimen before healing (Cracked specimen of PMMA was immersed in methanol for 3 min at 50°C and then immersed in 2-ethylhexyl alcohol for 60 min at 50°C), (b) cracked specimen after healing.(healing with methanol for 20 min at 50°C).. .................................................................................................. 46 Figure 18:. .Crack healing with mixture of methanol with ink. (a) cracked specimen before healing (Cracked specimen of PMMA was immersed in methanol for 15 min at 50°C and then immersed in 2-ethylhexyl alcohol for 60 min at 50°C), (b) cracked specimen after healing.(healing with mixture of methanol and ink for 20 min at 50°C). ..........................47 5.References: .......................................................48 6.Conclusions:. ....................................................52

    1. T. Alfrey, E. F. Gurnee, and W. G. Lloyd,“Diffusion in glassy polymers”,J.
    Polym. Sci. (C), 12, 249-261 (1966)
    2. . N. L. Thomas and A. H. Windle,“Theory of CaseⅡ diffusion”,Polymer, 23,
    529-542 (1982)
    3. A. Silberberg,“The role of matrix mechanical stress in swelling equilibrium
    and transport through networks”,Macromolecules, 13, 742-748 (1980)
    4. J.P. Harmon, S. Lee, and J.C.M. Li,“Methanol transport in PMMA: The
    effect of mechanical deformation”J. Polym. Sci. (A), 27, 397 (1987).
    5. J.P. Harmon, S. Lee, and J.C.M. Li,“Anisotropic methanol transport in
    PMMA after mechanical deformation”Polymer , 29, 1221-1226 (1988)
    6. C.B. Lin, S. LEE and K.S. Liu,“Methanol-induced crack healing in
    poly(methyl methacrylate)” Polymer Engng. Sci., 21, 1399-1406 (1990)
    7. P. P. Wang, S. Lee and J. P. Harmon,“Ethanol-induced crack healing in
    poly(methyl methacrylate)”,J. Polym. Sci. (B), Polym. Phys., 327,
    1217-1227 (1994)
    48
    8. J. X. Li and P. I. Lee, “Effect of sample size on Case II diffusion of
    methanol in poly(methyl methacrylate) beads”,Polymer 47 (2006)
    7726e7730
    9. M. Zhu and D. Vesely, “The effect of polymer swelling and resistance to
    flow on solvent diffusion and permeability”,European Polymer Journal 43,
    4503–4515 (2007)
    10.Wei-Lung Wang, J.R. Chen, and Sanboh Lee,” Solvent-induced stresses
    in glassy polym: Elastic model”, J. Mater. Res., Vol. 14, 4111-4118 (1999).
    11.Chen-Lun Huang, “Solvent-induced surface ripple pattern in irradiated
    polycrabonate”, Master Thesis, Department of Material Science and
    Engineering Tsing Hua University (2007)
    12.Kuo-feng Chou, Sanboh Lee and Julie P. Harmon ”Evolution of Surface
    Morphology in 2-Hydroxyethyl Methacrylate Copolymer Exposed to γ
    Radiation”, Macromolecules, 36, 5683-5688 (2003)
    13.A.R. Sousa , E.S. Arauo , A.L. Carvalho , M.S. Rabello and J.R. White,
    ”The stress cracking behaviour of poly(methyl methacrylate) after
    exposure to gamma radiation”, Polymer Degradation and Stability 92
    1465-1475 (2007)
    49
    14.A. Yan, K. Wu and X. Zhang, “A quantitative study on the surface crack
    pattern of concrete with high content of steel fiber”, Cement and Concrete
    Research 32 1371–1375 (2002)
    15.A. Kane and V. Doquet, “Surface crack and cracks networks in biaxial
    fatigue”, Engineering Fracture Mechanics 73, 233–251 (2006)
    16.Stéphane Gobron and NorishigeChiba, “Crack pattern simulation based on
    3D surface cellular automata”, the Visual Computer 17, 287–309 (2001)
    17.M. Jie and C.Y. Tang, “Limitation on crack speed for a strip-craze model
    applied to PMMA” ,Theoretical and Applied Fracture Mechanics 34, 11-16
    (2000)
    18.Chien-Kuo Liu, “The effect of gamma ray radiation on the physical
    properties of polymers and their mechanical properties” , Ph. D. Thesis,
    Department of Material Science and Engineering Tsing Hua University
    (2004)
    19.R. P. Wool and K. M. O’Connor,“A theory of crack healing in polymers”,J.
    Appl. Phys., 52, 5953-5963 (1981)
    20.K. Jud, H. H. Kausch and J. G. Willaims,“Fracture mechanics studies of
    crack healing and welding of polymers”,J. Mater. Sci.,16, 204-210 (1981)
    50
    21.R. P. Wool and K. M. O'Connor,“Time dependence of crack healing”,J.
    Polym. Sci., 20, 7-16 (1982)
    22.C. C. Yu, C. B. Lin and S. Lee,“Theory for the rate of crack closure”,J.
    Appl. Phys., 78, 212-216 (1995)
    23.P. G. de Gennes,“Reptation of a polymer chain in the presence of fixed
    obstacles”,J. Chem. Phys., 55, 572-579 (1971)
    24.H. H. Kausch and K. Jud,“Molecular aspects of crack formation and
    healing in glassy polymers”,Plast. Rubber Process. Appl., 2, 265-268
    (1982)
    25.Vijaya K. Rangari, D.N. Srivastava and A. Gedanken, “Preparation of ceria
    nanoparticles embedded in PMMA using sonochemical technique”,
    Materials Letters 60 3766–3768 (2006)
    26.C.H. Chien and H.M. Yu, “The novel fabrication of multi-metal layers
    embedded in PMMA polymer material”, Journal of Materials Processing
    Technology 187–188, 314–317 (2007)
    51

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE