研究生: |
陳娸玫 Chen, Chi-Mei |
---|---|
論文名稱: |
以(La,Ag)(Co,Fe)O3-δ為固態氧化物燃料電池陽極行煤合成氣反應之研究 On the performance of (La, Ag)(Co, Fe)O3-δ as solid oxide fuel cell anode material reacting with coal syngas |
指導教授: |
黃大仁
Huang, Ta-Jen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 117 |
中文關鍵詞: | 鈣鈦礦結構 、煤合成氣 、固態氧化物燃料電池 |
外文關鍵詞: | perovskite, coal syngas, solid oxide fuel cell |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
煤合成氣(Coal syngas)為氫氣與一氧化碳之混合氣,具有製程簡單、價格低廉等優點,且氫氣與一氧化碳兩者皆為最容易被還原之氣體,在通入陽極端前不需再經過氣體重組之步驟,而可直接反應生成水氣與二氧化碳,於應用上頗具潛力。
在陽極材料的選擇上,傳統的鎳觸媒如60Ni-YSZ,易於表面生成積碳,對於一氧化碳之活性較差。本研究選用具有混合導體特性之鈣鈦礦結構材料LSCF (La0.58Sr0.4Co0.2Fe0.8O3) 及LACF (La0.7Ag0.3Co0.2Fe0.8O3) 為陽極材料,並含浸不同活性金屬Cu、Ag,期能提升對水煤氣之反應性,並避免積碳,以改善此問題。
將LSCF及LACF混合導氧離子性較佳的GDC,並含浸2 wt% Cu或2 wt% Ag,配製成LSCF-50GDC-2Cu、LSCF-50GDC-2Ag、LACF73-50GDC三種陽極漿料,塗佈於YSZ電解質生胚上,陰極端使用活性極好的LSCF-50GDC-2Cu,通入100 mL/min煤合成氣為燃料,測得最大功率密度分別為22.658、37.537與23.496 mW•cm-2。
觀察陽極端通入煤合成氣之電流表現,可發現因CO之擴散及電化學反應速率較慢,因此H2之效能較CO為佳,在某些混合比例下,電池擁有相似之混合效能,推測陽極端有水氣轉移反應的發生,令CO與H2比例維持平衡關係。
使用煤合成氣為陽極燃料時,Ag觸媒比Cu觸媒之表現來得優越,推測以Ag為活性金屬時,氧於Ag上移動較快,可提升燃料催化效果。然而,含Ag量不能太多,否則將會覆蓋氧空缺,不利O2-之擴散。
由定電壓實驗可看出,電池效能受燃料比例與積碳所構成之電流收集層相互影響;而電池於陽極端之反應機制,推測與被吸附之H原子與O2-形成之OH基團相當重要,可促進形成COOH反應中間體,以利CO之氧化成CO2。
由此可知,鈣鈦礦材料對於煤合成氣具有一定之催化活性,以其為陽極材料,可提升電池效能,且在操作過程中並無失活現象。
1.黃鎮江, 燃料電池. 全華科技圖書股份有限公司, 2005年3月二版.
2.Gong, W.Q., S. Gopalan, and U.B. Pal, Performance of intermediate temperature (600-800 degrees C) solid oxide fuel cell based on Sr and Mg doped lanthanum-gallate electrolyte. Journal of Power Sources, 2006. 160(1): p. 305-315.
3.Ishihara, T., Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cells. Bulletin of the Chemical Society of Japan, 2006. 79(8): p. 1155-1166.
4.Yi, Y.F., et al., Fuel flexibility study of an integrated 25 kW SOFC reformer system. Journal of Power Sources, 2005. 144(1): p. 67-76.
5.Suwanwarangkul, R., et al., Experimental and modeling study of solid oxide fuel cell operating with syngas fuel. Journal of Power Sources, 2006. 161(1): p. 308-322.
6.Hartley, A., et al., La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells. Catalysis Today, 2000. 55(1-2): p. 197-204.
7.Haile, S.M., Fuel cell materials and components. Acta Materialia, 2003. 51(19): p. 5981-6000.
8.Goodenough, J.B., Ceramic technology - Oxide-ion conductors by design. Nature, 2000. 404(6780): p. 821-823.
9.Mai, A., et al., Time-dependent performance of mixed-conducting SOFC cathodes. Solid State Ionics, 2006. 177(19-25): p. 1965-1968.
10.Ishihara, T., H. Matsuda, and Y. Takita, DOPED LAGAO3 PEROVSKITE-TYPE OXIDE AS A NEW OXIDE IONIC CONDUCTOR. Journal of the American Chemical Society, 1994. 116(9): p. 3801-3803.
11.Litzelman, S.J., et al., Opportunities and Challenges in Materials Development for Thin Film Solid Oxide Fuel Cells. Fuel Cells, 2008. 8(5): p. 294-302.
12.Sun, C.W. and U. Stimming, Recent anode advances in solid oxide fuel cells. Journal of Power Sources, 2007. 171(2): p. 247-260.
13.E. Hafel, H.G.L., Elektrodencharakterisierumg und Grenzteperatur Beider Elektrochemischen Messungder Sauerstoffaktivitat an Platin. Solid State Ionics, 1987. 23: p. 235-239.
14.B. A. van Hassel, B.A.B., A. J. Burggraaf, Electrode Polarization at Au,O2(g)/Yttria Stabilized Zirconia Interface.PartI: Theoretical Considerations of Reaction Model. Solid State Ionics, 1991. 48: p. 139-154.
15.J. Mizusaki, K.A., S. yamauchi, K. Fueki, Electrode Reaction at Pt,O2(g)/Stabilized Zirconia Interface .PartI: Theoretical Considerations of Reaction Model Solid State Ionics, 1987. 22: p. 313-322.
16.Mizusaki, J., et al., PREPARATION OF NICKEL PATTERN ELECTRODES ON YSZ AND THEIR ELECTROCHEMICAL PROPERTIES IN H2-H2O ATMOSPHERES. Journal of the Electrochemical Society, 1994. 141(8): p. 2129-2134.
17.Atkinson, A., et al., Advanced anodes for high-temperature fuel cells. Nature Materials, 2004. 3(1): p. 17-27.
18.Wincewicz, K.C. and J.S. Cooper, Taxonomies of SOFC material and manufacturing alternatives. Journal of Power Sources, 2005. 140(2): p. 280-296.
19.Beckel, D., et al., Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis. Solid State Ionics, 2007. 178(5-6): p. 407-415.
20.Fu, C.J., et al., Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC. Electrochimica Acta, 2007. 52(13): p. 4589-4594.
21.Robertson, N.L. and J.N. Michaels, OXYGEN-EXCHANGE ON PLATINUM-ELECTRODES IN ZIRCONIA CELLS - LOCATION OF ELECTROCHEMICAL REACTION SITES. Journal of the Electrochemical Society, 1990. 137(1): p. 129-135.
22.Weber, A. and E. Ivers-Tiffee, Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, 2004. 127(1-2): p. 273-283.
23.許寧逸, 由碳能朝向氫能的燃料電池. 科學發展月刊, 2003. 367.
24.Inaba, H. and H. Tagawa, Ceria-based solid electrolytes - Review. Solid State Ionics, 1996. 83(1-2): p. 1-16.
25.Ge, L., et al., Facile autocombustion synthesis of La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) perovskite via a modified complexing sol-gel process with NH4NO3 as combustion aid. Journal of Alloys and Compounds, 2008. 450(1-2): p. 338-347.
26.Watanabe, M., et al., HIGH-PERFORMANCE CATALYZED-REACTION LAYER FOR MEDIUM-TEMPERATURE OPERATING SOLID OXIDE FUEL-CELLS. Journal of the Electrochemical Society, 1994. 141(2): p. 342-346.
27.Tao, S.W. and J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials, 2003. 2(5): p. 320-323.
28.Ruiz-Morales, J.C., et al., On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3-delta as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochimica Acta, 2006. 52(1): p. 278-284.
29.Wan, J., J.H. Zhu, and J.B. Goodenough, La0.75Sr0.25Cr0.5Mn0.5O3-delta+Cu composite anode running on H2 and CH4 fuels. Solid State Ionics, 2006. 177(13-14): p. 1211-1217.
30.Sin, A., et al., Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells. Journal of Power Sources, 2005. 145(1): p. 68-73.
31.Brunaccini, G., et al., Investigation composite Ni-doped perovskite anode catalyst for electrooxidation of hydrogen in solid oxide fuel cell. International Journal of Hydrogen Energy, 2008. 33(12): p. 3150-3152.
32.Huang, Y.H., et al., Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006. 312(5771): p. 254-257.
33.Stoukides, M., Solid-electrolyte membrane reactors: Current experience and future outlook. Catalysis Reviews-Science and Engineering, 2000. 42(1-2): p. 1-70.
34.Sasaki, K., et al., Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H-2 and CO gases. Journal of the Electrochemical Society, 2002. 149(3): p. A227-A233.
35.Weber, A., et al., Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes. Solid State Ionics, 2002. 152-153: p. 543-550.
36.Aloui, T. and K. Halouani, Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel. Applied Thermal Engineering, 2007. 27(4): p. 731-737.
37.Pomfret, M.B., J.C. Owrutsky, and R.A. Walker, In situ studies of fuel oxidation in solid oxide fuel cells. Analytical Chemistry, 2007. 79(6): p. 2367-2372.
38.Costa-Nunes, O., R.J. Gorte, and J.M. Vohs, Comparison of the performance of Cu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with H2, CO, and syngas. Journal of Power Sources, 2005. 141(2): p. 241-249.
39.Imamura, S., et al., OXIDATION OF CARBON-MONOXIDE CATALYZED BY MANGANESE SILVER COMPOSITE OXIDES. Journal of Catalysis, 1988. 109(1): p. 198-205.
40.Song, K.S., et al., Catalytic combustion of CH4 and CO on La1-xMxMnO3 perovskites. Catalysis Today, 1999. 47(1-4): p. 155-160.
41.Machocki, A., et al., Manganese-lanthanum oxides modified with silver for the catalytic combustion of methane. Journal of Catalysis, 2004. 227(2): p. 282-296.
42.Choudhary, V.R., et al., Low-temperature total oxidation of methane over Ag-doped LaMO3 perovskite oxides. Chemical Communications, 1996(9): p. 1021-1022.
43.Choudhary, V.R., B.S. Uphade, and S.G. Pataskar, Low temperature complete combustion of methane over Ag-doped LaFeO3 and LaFe0.5Co0.5O3 perovskite oxide catalysts. Fuel, 1999. 78(8): p. 919-921.
44.Leng, Y.J., et al., Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells. Journal of Power Sources, 2003. 117(1-2): p. 26-34.
45.Brouer, G.G., H.Z. Anorg, Allg. Chem., 1954. 207.
46.Hansen, K.K. and K.V. Hansen, A-site deficient (La0.6Sr0.4)1-sFe0.8Co0.2O3-[delta] perovskites as SOFC cathodes. Solid State Ionics, 2007. 178(23-24): p. 1379-1384.
47.Kucharczyk, B. and W. Tylus, Partial substitution of lanthanum with silver in the LaMnO3 perovskite: Effect of the modification on the activity of monolithic catalysts in the reactions of methane and carbon oxide oxidation. Applied Catalysis a-General, 2008. 335(1): p. 28-36.
48.Jiang, Y. and A.V. Virkar, Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs. Journal of the Electrochemical Society, 2003. 150(7): p. A942-A951.
49.Wang, F.Y., S.F. Cheng, and B.Z. Wan, Porous Ag-CGO cermets as anode materials for ITSOFC using CO fuel. Catalysis Communications, 2008. 9(7): p. 1595-1599.
50.Jacobs, G., et al., Water-gas shift: comparative screening of metal promoters for metal/ceria systems and role of the metal. Applied Catalysis a-General, 2004. 258(2): p. 203-214.
51.Wang, X. and R.J. Gorte, The effect of Fe and other promoters on the activity of Pd/ceria for the water-gas shift reaction. Applied Catalysis a-General, 2003. 247(1): p. 157-162.