研究生: |
陳佳典 |
---|---|
論文名稱: |
FEXP模型之參數估計與推論 |
指導教授: | 徐南蓉 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | 長記憶模式 、譜密度函數 |
相關次數: | 點閱:45 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Bloomfield(1973)針對擁有短記憶(short-memory)性質之時間序列,提出指數型態之譜密度函數模型(稱為Bloomfield模型或EXP模型)。Beran(1993)進一步將Bloomfield模型推廣至長記憶(long-memory)模式下的fractional exponential模型(FEXP模型)。Robinson(1995)、Hurvich & Brodsky(1998)以及Moulines & Soulier(1999)針對FEXP模型,提出譜密度函數之參數估計量並推導出該估計量之大樣本性質。
本研究之目標即對於擁有長記憶性質的FEXP模型,利用最小平方法與LASSO兩種估計方法,比較其參數估計量表現之優劣以及不同選模準則對於建構迴歸模型之影響。
模擬結果顯示,短記憶模式結構的型態是影響長距相關參數估計量表現優劣的重要因素。當短記憶模式結構較為單純時,以最小平方法搭配Mallow’s criterion(Mallow, 1973)之估計量表現為最佳(相較於其他參數估計方法與選模準則之組合),然而當短記憶模式結構越複雜時,LASSO估計量之表現將優於最小平方估計量。但不論樣本大小及參數估計方法為何,當長距相關參數越接近參數空間之邊界時,兩種估計量之表現也隨之越不理想。
Allen, D.M. (1974), The relationship between variable
selection and data augmentation and a method for
prediction. Technometrics, 16, 125-127.
Baillie, R.T., Chung, C.F. and Tieslau, M.A. (1996),
Analyzing inflation by the
fractionally integration ARFIMA-GARCH model. Journal of
Applied Econometrics, 11, 23-40.
Beran, J. (1993), Fitting long memory models by generalized
regression. Biometrika,
80, 817-822.
Beran, J. (1994), Statistics for long-memory process.
Chapman and Hall, New York.
Bloomfield, P. (1973), An exponential model for the
spectrum of a scalar time series. Biometrika, 60, 217-226.
Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R.
(2004), Least angle regression. The Annals of Statistics,
32, 407-499.
Fu, W.J. (1998), Penalized regressions: The bridge versus t
the LASSO. Journal of
Computational and Graphical Statistics, 7, 397-416.
Geisser, S. (1975), The predictive sample reuse method with
applications. Journal of American Statistical
Association, 70, 320-328.
Geweke, J.F. and Porter-Hudak, S. (1983), The estimation
and application of long
memory time series models. Journal of Time Series
Analysis, 4, 221-238.
Granger, C.W.J. and Joyeux, R. (1980), An introduction to
long memory time series models and fractional
differencing. Journal of Time Series Analysis, 1, 15-29.
Hosking, J.R.M. (1981), Fractional differencing.
Biometrika, 68, 165-176.
Hosking, J.R.M. (1984), Modelling persistence in
hydrological time series using fractional differencing.
Water Resources Reserch, 20, 1898-1908.
Hurvich, C.M., Deo, R.S. and Brodsky, J. (1998), The mean
squared error of Geweke and Proter-Hudak’s estimator of
the memory parameter of a long memory time series.
Journal of Time Series Analysis, 19, 19-46.
Hurvich, C.M. and Brodsky, J. (2001), Broadband
semiparametric estimation of the
memory parameter of a long-memory time series using
fractional exponential models. Journal of Time Series
Analysis, 22, 221-249.
Hurvich, C.M. (2002), Multistep forecasting of long memory
series using fractional exponential models. International
Journal of Forecasting, 18, 167-179.
Mallow, C.L. (1973), Some comments on Cp. Technometrics,
15, 661-675.
Moulines, E. and Soulier, P. (1999), Broadband log-
periodogram regression of time series with long-range
dependence. The Annals of Statistics, 27, 1415-1439.
Moulines, E. and Soulier, P. (2000), Data driven order
selection for projection estimator of the spectral
density of time series with long memory dependence.
Journal of Time Series Analysis, 21, 193-218.
Robinson, P.M. (1995), Gaussian semiparametric estimation
of long range dependence. The Annals of Statistics, 23,
1630-1661.
Tibshirani, R. (1996), Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society,
58, 267-288.
Tsay, Wen-Jen. (2000), Long memory story of the real
interest rate. Economics Letters, 67, 325-330.
Wahba, G. and Wold, S. (1975), A completely automatic
French curve: fitting spline functions by cross-
validation. Communications in Statistics, 4, 1-17.