簡易檢索 / 詳目顯示

研究生: 陳佳典
論文名稱: FEXP模型之參數估計與推論
指導教授: 徐南蓉
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 38
中文關鍵詞: 長記憶模式譜密度函數
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Bloomfield(1973)針對擁有短記憶(short-memory)性質之時間序列,提出指數型態之譜密度函數模型(稱為Bloomfield模型或EXP模型)。Beran(1993)進一步將Bloomfield模型推廣至長記憶(long-memory)模式下的fractional exponential模型(FEXP模型)。Robinson(1995)、Hurvich & Brodsky(1998)以及Moulines & Soulier(1999)針對FEXP模型,提出譜密度函數之參數估計量並推導出該估計量之大樣本性質。

      本研究之目標即對於擁有長記憶性質的FEXP模型,利用最小平方法與LASSO兩種估計方法,比較其參數估計量表現之優劣以及不同選模準則對於建構迴歸模型之影響。

      模擬結果顯示,短記憶模式結構的型態是影響長距相關參數估計量表現優劣的重要因素。當短記憶模式結構較為單純時,以最小平方法搭配Mallow’s criterion(Mallow, 1973)之估計量表現為最佳(相較於其他參數估計方法與選模準則之組合),然而當短記憶模式結構越複雜時,LASSO估計量之表現將優於最小平方估計量。但不論樣本大小及參數估計方法為何,當長距相關參數越接近參數空間之邊界時,兩種估計量之表現也隨之越不理想。


    第一章 文獻探討…………………………………1 第二章 FEXP模型…………………………………5 第三章 研究方法…………………………………7 3.1 對數譜密度函數迴歸模型………7 3.2 參數估計…………………………9 3.2.1 最小平方法…………… 9 3.2.2 LASSO……………………11 3.2.3 兩種參數估計方法之比較… 13 第四章 模擬分析………………………………… 15 4.1 模型設定………………………………15 4.2 結果分析………………………………16 第五章 實證分析………………………………… 31 第六章 結論與未來研究方向…………………… 35 參考文獻…………………………………………… 36

    Allen, D.M. (1974), The relationship between variable
    selection and data augmentation and a method for
    prediction. Technometrics, 16, 125-127.

    Baillie, R.T., Chung, C.F. and Tieslau, M.A. (1996),
    Analyzing inflation by the
    fractionally integration ARFIMA-GARCH model. Journal of
    Applied Econometrics, 11, 23-40.

    Beran, J. (1993), Fitting long memory models by generalized
    regression. Biometrika,
    80, 817-822.

    Beran, J. (1994), Statistics for long-memory process.
    Chapman and Hall, New York.

    Bloomfield, P. (1973), An exponential model for the
    spectrum of a scalar time series. Biometrika, 60, 217-226.

    Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R.
    (2004), Least angle regression. The Annals of Statistics,
    32, 407-499.

    Fu, W.J. (1998), Penalized regressions: The bridge versus t
    the LASSO. Journal of
    Computational and Graphical Statistics, 7, 397-416.

    Geisser, S. (1975), The predictive sample reuse method with
    applications. Journal of American Statistical
    Association, 70, 320-328.

    Geweke, J.F. and Porter-Hudak, S. (1983), The estimation
    and application of long
    memory time series models. Journal of Time Series
    Analysis, 4, 221-238.

    Granger, C.W.J. and Joyeux, R. (1980), An introduction to
    long memory time series models and fractional
    differencing. Journal of Time Series Analysis, 1, 15-29.

    Hosking, J.R.M. (1981), Fractional differencing.
    Biometrika, 68, 165-176.

    Hosking, J.R.M. (1984), Modelling persistence in
    hydrological time series using fractional differencing.
    Water Resources Reserch, 20, 1898-1908.

    Hurvich, C.M., Deo, R.S. and Brodsky, J. (1998), The mean
    squared error of Geweke and Proter-Hudak’s estimator of
    the memory parameter of a long memory time series.
    Journal of Time Series Analysis, 19, 19-46.

    Hurvich, C.M. and Brodsky, J. (2001), Broadband
    semiparametric estimation of the
    memory parameter of a long-memory time series using
    fractional exponential models. Journal of Time Series
    Analysis, 22, 221-249.

    Hurvich, C.M. (2002), Multistep forecasting of long memory
    series using fractional exponential models. International
    Journal of Forecasting, 18, 167-179.

    Mallow, C.L. (1973), Some comments on Cp. Technometrics,
    15, 661-675.

    Moulines, E. and Soulier, P. (1999), Broadband log-
    periodogram regression of time series with long-range
    dependence. The Annals of Statistics, 27, 1415-1439.

    Moulines, E. and Soulier, P. (2000), Data driven order
    selection for projection estimator of the spectral
    density of time series with long memory dependence.
    Journal of Time Series Analysis, 21, 193-218.

    Robinson, P.M. (1995), Gaussian semiparametric estimation
    of long range dependence. The Annals of Statistics, 23,
    1630-1661.

    Tibshirani, R. (1996), Regression shrinkage and selection
    via the lasso. Journal of the Royal Statistical Society,
    58, 267-288.

    Tsay, Wen-Jen. (2000), Long memory story of the real
    interest rate. Economics Letters, 67, 325-330.

    Wahba, G. and Wold, S. (1975), A completely automatic
    French curve: fitting spline functions by cross-
    validation. Communications in Statistics, 4, 1-17.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE