簡易檢索 / 詳目顯示

研究生: 郭信宏
Kuo, Hsin-Hung
論文名稱: 高效率之穩定雙三配位銥金屬錯合物:設計、合成、鑑定及於有機發光二極體上的應用
Design, Synthesis, Characterization of Efficient and Stable Bis-tridentate Iridium (III) Complexes and Their Applications in Organic Light-Emitting Diodes
指導教授: 季昀
Chi, Yun
口試委員: 林皓武
Lin, Hao-Wu
徐秀福
Hsu, Hsiu-Fu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 165
中文關鍵詞: 有機發光二極體銥金屬錯合物雙三配位
外文關鍵詞: OLEDs, Iridium, Complexes, Bis-tridentate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機發光二極體技術所製成的顯示器,因其視角廣、高對比、色彩鮮豔等優點,被譽為是下一代的夢幻顯示技術;其中,藍色的發光材料成為達成全彩顯示器不可或缺的一塊拼圖,然而,滿足商業化標準的藍光材料目前尚未發展成功,故此篇論文以開發穩定且高效率的藍光材料為目標,成功合成出三個系列搭配 pincer dicarbene ancillary (C^C^C) 和 arylpyridylpyrazole (C^N^N) 之雙三配位 (3+3) 銥金屬錯合物,於此,我們藉由干擾配位基有效的 pi 電子之共軛性質來提升發光團的能隙,設計出放射正藍光的磷光材料,且透過巧妙的分子設計,此三個系列的磷光材料皆展現優秀的光穩定性以及放光效率。首先,我們引入含有鍵能較強 C(sp2)-N(sp2) 之 carbazole 單元於配位基 (2-carbazolyl-6-pyrazolylpyridine) 中,這些新穎的錯合物在 CH2Cl2 溶液中展現優秀的量子效率以及短的發光半衰期;且在 UV 的光照下,藍光材料皆表現良好的光穩定特質。最後應用於 OLEDs 中,其中的元件也表現了最大效率:max. EQE: 21.6 %、PE: 29.3 lm/W 和 CE: 31.7 cd/A。
    第二,先前實驗室的材料 [Ir(mimb)(pzpyOphF)] 之 OLEDs 元件已經成功展現高效率的深藍光性質 (max. EQE = 20.7 %, CIE = (0.15, 0.17)),在本篇論文中,我們延伸此研究,嘗試利用脂肪氟 (aryl-CF3) 取代芳香氟 (aryl-F),且修飾在不同苯環的取代位置。結果,此系列的錯合物皆維持高量子效率 (PLQY ~ 100 %),且隨著取代基位置的改變而有不同的放光生命期 (3.4 ~ 10.0 μs)。此外,光降解的實驗結果指出,在 UV 的光照下,含有 aryl-CF3 的錯合物較 aryl-F 的錯合物展現更佳穩定性。最後,在相似的分子架構下,我們證實 OLEDs 元件的表現會與錯合物自身放光特性而改變,更進一步指出 radiative lifetime 為元件表現的關鍵因素之一。
    最後,我們改良輔助配位基 (C^C^C) 的設計,藉由於 benzene 和 imidazole 之間引入 methylene (CH2) 基團,來減少配位基與銥金屬的環張力,最終提升結晶場能。錯合物搭配此新型的 pincer 加上典型的三配位發光團 (2-phenyl-6-pyrazolylpyridine、2-phenoxy-6-pyrazolylpyridine 和 2-carbazolyl-6-pyrazolylpyridine),不但能提升量子效率,也能縮短 radiative lifetime;此外,光降解實驗結果指出此系列材料仍可維持 3+3 優秀的光穩定性。伴有改良的光物理性質,我們期待其第三系列的材料製成 OLEDs 元件後,將有突破性的效能結果。


    Organic light-emitting diodes (OLEDs) have been considered as next-generation display technologies because of their high contrast, bright and vivid color and wide view angle. However, stable and efficient blue lighe-emitting materials, an indispensable emitters for realizing full-color displays, have not been successfully developed yet. Therefore, we aim to design, synthesize and fabricate blue OLEDs materials to fulfill the requirement to commercialization. In this thesis, we have successfully synthesized three classes of blue bis-tridentate iridium complexes bearing typical pincer dicarbene ancillary (C^C^C) and functional pyridylazolate (C^N^N) chromophoric chelates. These efficeint and stable light-emitting materials can be developed using ingenious tatics that break conjugation within chromophoric ligands, attempting to rasie ππ* transition energy and to obtain true-blue emission hue. At the beginning, we employed carbazolyl fragments, for which strong C(sp2)-N(sp2) covalent bonding was believed to provide greater chemical stability. Afterwards, the obtained carbazolyl-containing iridium(III) complexes exhibited both superior photophysical properties and outstanding photo-stabilities against UV-irradiation in degassed toluene. Moreover, their as-fabricated devices demonstrated excellent true-blue light-emitting electroluminescence with peak efficiency of max. EQE: 21.6 %, PE: 29.3 lm/W and CE: 31.7 cd/A.
    Secondly, our previos fluorophenoxy-containing iridium phosphors [Ir(mimb)(pzpyOphF)] have displayed efficient deep blue light-emitting properties with peak efficiency of max. EQE = 20.7 % and CIE = (0.15, 0.17). However, emitters with C(aryl)-F substituent are known to degrade at high current density, which could deteriorate the device operational lifetime. In this work, we attempted to replace less stable aromatic C(aryl)-F group with more stable aliphatic one C(aryl)-CF3, and to functionalize trifluoromethyl group at different position in this class of iridium complexes. These phosphors maintained high photoluminescence efficiency (PLQY ~ 100%) but possessed varied radiative lifetime (3.4 ~ 10.0 μs). Surprisingly, the photo-degradation response of these complexes showed that all emitters with C(aryl)-CF3 substituent provide better photostabilities against UV irridation than those with C(aryl)-F group. Finally, we correlated substituent effects with respect to their photophysical properties and OLEDs performances. The electroluminescence illustrated that radiative lifetime was a crucial factor to dictate the OLEDs performances, where faster PL decay as well as higher QY in host matrix can enhance OLEDs efficiency.
    Thirdly, we introduced methylene (CH2) group between benzene and imidazole in bis(N-methyl-imidazolylidene)benzene, intending to alleviate the ring-tension and to afford greater ligand-field strength. Consequently, these iridium complexes assembled using this ancillary as well as three different dianionic tridentate ligands, i.e. 2-phenyl-6-pyrazolypyridine, 2-phenoxy-6-pyrazolypyridine and 2-carbazolyl-6-pyrazolypyridine, showed not only higher quantum efficiency but also shorter radiative lifetime than traditional designs. Additionally, these novel emitters also maintained decent photostabilities against irridaition in toluene. With remarkable photophysical properties in hands, we’re looking forward to evaluate their corresponding OLEDs performances.

    摘要 1 Abstract 3 謝誌 5 第一章、序論 13 第一節、OLEDs 歷史及簡介 14 第二節、OLEDs 運作原理 14 第三節、螢光以及磷光材料發光原理 18 第四節、文獻探討 21 第五節、研究動機及分子設計 48 第二章、實驗合成 50 第一節、試藥與儀器 50 試藥 50 分析儀器及實驗方法 50 第二節、配位基之合成 54 一、Dicarbene pincer ancillary (C^C^C)H系列配位基合成 54 1. 合成 dicarbene pincer ancillary 系列配位基之前驅物 (A) 54 2. 合成 dicarbene pincer ancillary 系列配位基之前驅物 (B) 55 3. 合成 dicarbene pincer ancillary 系列配位基之前驅物 (C) 55 4. 合成 dicarbene pincer ancillary 系列配位基之前驅物 (D) 56 5. 合成 dicarbene pincer ancillary 系列配位基之前驅物 (E) 56 6. 合成 dicarbene pincer ancillary 系列配位基之前驅物 (F) 57 7. 合成 dicarbene pincer ancillary 系列配位基之前驅物 (G) 58 8. 合成 dicarbene pincer ancillary 系列配位基之前驅物 (H) 58 9. 合成 dicarbene pincer ancillary 系列配位基之前驅物 (I) 59 10. 合成 dicarbene pincer ancillary 系列配位基之前驅物 (J) 59 11. 合成 (mimb)H3(PF6)2 (LH1-1) 60 12. 合成 (pimb)H3(PF6)2 (LH1-2) 61 13. 合成 (bimb)H3(PF6)2 (LH1-3) 61 14. 合成 (mimf)H3(PF6)2 (LH1-4) 62 15. 合成 (pimf)H3(PF6)2 (LH1-5) 63 16. 合成 LH1-6 64 17. 合成 LH1-7 64 二、Chromophore (C^N^N)H2系列配位基合成 66 1. 合成chromophoric ligands 之前驅物 (K) 66 2. 合成 chromophoric Ligands 之前驅物 (L) 67 3. 合成 pzCF3pytBuCz, [LH2–1] 67 4. 合成 pzCF3pytBuCz2TF, [LH2–2] 69 5. 合成 pzCF3pytBuOphF, [LH2–3] 73 6. 合成 pzCF3pytBuOphmTF [LH2-4] 74 7. 合成 pzCF3pyHOphmTF, [LH2–5] 75 8. 合成 pzCF3pytBuOphpTF, [LH2–6] 76 9. 合成 pzCF3pyHOphpTF, [LH2–7] 78 第三節、銥金屬錯合物之合成 80 第一系列銥金屬錯合物之合成 80 1. 合成錯合物[Ir(mimb)(pzCF3pytBuCz] (1) 80 2. 合成錯合物 [Ir(mimf)(pzCF3pytBuCz] (2) 81 3. 合成錯合物 [Ir(mimb)(pzCF3pytBuCz2TF] (3) 81 4. 合成錯合物 [Ir(mimf)(pzCF3pytBuCz2TF] (4) 82 5. 合成錯合物 [Ir(pimf)(pzCF3pytBuCz2TF] (5) 83 第二系列銥金屬錯合物之合成 84 6. 合成錯合物[Ir(mimb)(pzCF3pytBuOphF] (6) 84 7. 合成錯合物[Ir(mimb)(pzCF3pytBuOphmTF] (7) 84 8. 合成錯合物[Ir(mimb)(pzCF3pyHOphmTF] (8) 85 9. 合成錯合物[Ir(mimb)(pzCF3pytBuOphpTF] (9) 86 10. 合成錯合物[Ir(mimb)(pzCF3pyHOphpTF] (10) 86 11. 合成錯合物[Ir(pimb)(pzCF3pyHOphpTF] (11) 87 12. 合成錯合物[Ir(bimb)(pzCF3pyHOphpTF] (12) 87 第三系列銥金屬錯合物之合成 89 13. 合成錯合物[Ir(LH1-7)(pzCF3pytBuCz2TF] (13) 89 14. 合成錯合物[Ir(LH1-7)(pzCF3pyHphpTF] (14) 90 15. 合成錯合物[Ir(mimf)(pzCF3pyHOphpTF] (15) 90 16. 合成錯合物[Ir(LH1-7)(pzCF3pyHOphpTF] (16) 91 17. 合成錯合物[Ir(LH1-6)(pzCF3pyHOphpTF] (17) 92 第三章、結果與討論 93 第一節、第一系列銥金屬錯合物 93 錯合物設計 93 錯合物晶體解析 93 光物理性質 96 理論計算 99 電化學性質探討 101 光穩定測試 103 元件的製備與探討 106 第二節、第二系列銥金屬錯合物 111 錯合物設計 111 光物理性質 112 理論計算 115 電化學性質探討 118 光穩定測試 120 元件的製備與探討 122 第三節、第三系列銥金屬錯合物 128 錯合物設計 128 錯合物 (14) 晶體解析 130 錯合物 (16) 晶體解析 133 光物理性質 136 電化學性質探討 140 光穩定測試 142 第四章、結論 144 錯合物 NMR 光譜圖 145 錯合物 (1) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 145 錯合物 (2) 之 1H & 19F NMR 光譜圖 (CD2Cl2 @ RT) 146 錯合物 (3) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 147 錯合物 (4) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 148 錯合物 (5) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 149 錯合物 (6) 之 1H & 19F NMR 光譜圖 (CD2Cl2 @ RT) 150 錯合物 (7) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 151 錯合物 (8) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 152 錯合物 (9) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 153 錯合物 (10) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 154 錯合物 (11) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 155 錯合物 (12) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 156 錯合物 (13) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 157 錯合物 (14) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 158 錯合物 (15) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 159 錯合物 (16) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 160 錯合物 (17) 之 1H & 19F NMR 光譜圖 (acetone-d6 @ RT) 161 Reference 162

    1. M. Pope, H. Kallmann and J. Giachino, J. Chem. Phys., 1965, 42, 2540-2543.
    2. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913-915.
    3. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 1990, 347, 539-541.
    4. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Brédas, M. Lögdlund and W. R. Salaneck, Nature, 1999, 397, 121-128.
    5. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu and E. P. Woo, Science, 2000, 290, 2123-2126.
    6. S. W. Wen, M. T. Lee and C. H. Chen, J. Display Tech., 2005, 1, 90-99.
    7. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151-154.
    8. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4-6.
    9. K. A. King, P. J. Spellane and R. J. Watts, J. Am. Chem. Soc., 1985, 107, 1431-1432.
    10. C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson and S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082-2084.
    11. R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown, S. Garon and M. E. Thompson, Appl. Phys. Lett., 2003, 82, 2422-2424.
    12. S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki and F. Sato, Appl. Phys. Lett., 2003, 83, 569-571.
    13. J. Li, P. I. Djurovich, B. D. Alleyne, I. Tsyba, N. N. Ho, R. Bau and M. E. Thompson, Polyhedron, 2004, 23, 419-428.
    14. R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren and J. Li, Appl. Phys. Lett., 2003, 83. 3818.
    15. S. J. Yeh, M. F. Wu, C. T. Chen, Y. H. Song, Y. Chi, M. H. Ho, S. F. Hsu and C. H. Chen, Adv. Mater., 2005, 17, 285-289.
    16. C. H. Yang, Y. M. Cheng, Y. Chi, C. J. Hsu, F. C. Fang, K. T. Wong, P. T. Chou, C. H. Chang, M. H. Tsai and C. C. Wu, Angew. Chem. Int. Ed., 2007, 46, 2418-2421.
    17. S.-J. Su, E. Gonmori, H. Sasabe and J. Kido, Adv. Mater., 2008, 20, 4189-4194
    18. H. Sasabe, E. Gonmori, T. Chiba, Y. J. Li, D. Tanaka, S. J. Su, T. Takeda, Y. J. Pu, K. I. Nakayama and J. Kido, Chem. Mater., 2008, 20, 5951-5953.
    19. Y. Kang, Y. L. Chang, J. S. Lu, S. B. Ko, Y. L. Rao, M. Varlan, Z. H. Lu and S. N. Wang, J. Mater. Chem. C, 2013, 1, 441-450.
    20. V. Sivasubramaniam, F. Brodkorb, S. Hanning, H. P. Loebl, V. van Elsbergen, H. Boerner, U. Scherf and M. Kreyenschmidt, J. Flour. Chem., 2009, 130, 640-649.
    21. J. Lee, H. Oh, J. Kim, K.-M. Park, K. S. Yook, J. Y. Lee and Y. Kang, J. Mater. Chem. C, 2014, 2, 6040-6047.
    22. H. Shin, J. H. Lee, C. K. Moon, J. S. Huh, B. Sim and J. J. Kim, Adv. Mater., 2016, 28, 4920-4925.
    23. T. Sajoto, P. I. Djurovich, A. Tamayo, M. Yousufuddin, R. Bau, M. E. Thompson, R. J. Holmes and S. R. Forrest, Inorg. Chem., 2005, 44, 7992-8003.
    24. R. J. Holmes, S. R. Forrest, T. Sajoto, A. Tamayo, P. I. Djurovich, M. E. Thompson, J. Brooks, Y. J. Tung, B. W. D’Andrade, M. S. Weaver, R. C. Kwong and J. J. Brown, Appl. Phys. Lett., 2005, 87, 243507.
    25. H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz and J. Kido, Adv. Mater., 2010, 22, 5003-5007.
    26. J. Lee, H. F. Chen, T. Batagoda, C. Coburn, P. I. Djurovich, M. E. Thompson and S. R. Forrest, Nat. Mater., 2016, 15, 92-98.
    27. J. Lee, C. Jeong, T. Batagoda, C. Coburn, M. E. Thompson and S. R. Forrest, Nat. Commun., 2017, 8, 15566.
    28. D. Jacquemin and D. Escudero, Chem. Sci., 2017, 8, 7844-7850.
    29. A. J. Wilkinson, A. E. Goeta, C. E. Foster and J. A. Williams, Inorg. Chem., 2004, 43, 6513-6515.
    30. A. J. Wilkinson, H. Puschmann, J. A. Howard, C. E. Foster and J. A. Williams, Inorg. Chem., 2006, 45, 8685-8699.
    31. B. H. Tong, H. Y. Ku, I. J. Chen, Y. Chi, H. C. Kao, C. C. Yeh, C. H. Chang, S. H. Liu, G. H. Lee and P. T. Chou, J. Mater. Chem. C, 2015, 3, 3460-3471.
    32. J. Lin, N.-Y. Chau, J.-L. Liao, W.-Y. Wong, C.-Y. Lu, Z.-T. Sie, C.-H. Chang, M. A. Fox, P. J. Low, G.-H. Lee and Y. Chi, Organometallics, 2016, 35, 1813-1824.
    33. C. Y. Kuei, W. L. Tsai, B. Tong, M. Jiao, W. K. Lee, Y. Chi, C. C. Wu, S. H. Liu, G. H. Lee and P. T. Chou, Adv. Mater., 2016, 28, 2795-2800.
    34. H. H. Kuo, Y. T. Chen, L. R. Devereux, C. C. Wu, M. A. Fox, C. Y. Kuei, Y. Chi and G. H. Lee, Adv. Mater., 2017, 29, 1702464.
    35. C. Han, Y. Zhao, H. Xu, J. Chen, Z. Deng, D. Ma, Q. Li and P. Yan, Chem. Eur. J., 2011, 17, 5800-5803.
    36. S. Moromizato, Y. Hisamatsu, T. Suzuki, Y. Matsuo, R. Abe and S. Aoki, Inorg. Chem., 2012, 51, 12697-12706.
    37. X. Ma, J. Jia, R. Cao, X. Wang and H. Fei, J. Am. Chem. Soc., 2014, 136, 17734-17737.
    38. S. W. Sheehan, J. M. Thomsen, U. Hintermair, R. H. Crabtree, G. W. Brudvig and C. A. Schmuttenmaer, Nat. Commun., 2015, 6, 6469.
    39. C. Du, X. Yang, M. T. Mayer, H. Hoyt, J. Xie, G. McMahon, G. Bischoping and D. Wang, Angew. Chem. Int. Ed., 2013, 52, 12692-12695.
    40. H. C. Su, H. F. Chen, F. C. Fang, C. C. Liu, C. C. Wu, K. T. Wong, Y. H. Liu and S. M. Peng, J. Am. Chem. Soc., 2008, 130, 3413-3419.
    41. S. Tang, J. Pan, H. A. Buchholz and L. Edman, J. Am. Chem. Soc., 2013, 135, 3647-3652.
    42. K. Rurack and M. Spieles, Anal. Chem., 2011, 83, 1232-1242.
    43. J. C. de Mello, H. F. Wittmann and R. H. Friend, Adv. Mater., 1997, 9, 230-232.
    44. S. Schmidbauer, A. Hohenleutner and B. Konig, Beilstein J. Org. Chem., 2013, 9, 2088-2096.
    45. V. C. Vargas, R. J. Rubio, T. K. Hollis and M. E. Salcido, Org. Lett., 2003, 5, 4847-4849.
    46. A. P. Degnan, G. O. Tora, Y. Han, R. Rajamani, R. Bertekap, R. Krause, C. D. Davis, J. Hu, D. Morgan, S. J. Taylor, K. Krause, Y. W. Li, G. Mattson, M. A. Cunningham, M. T. Taber, N. J. Lodge, J. J. Bronson, K. W. Gillman and J. E. Macor, Bioorg. Med. Chem. Lett., 2015, 25, 3039-3043.
    47. R. Salvio, R. Cacciapaglia and L. Mandolini, J. Org. Chem., 2011, 76, 5438-5443.
    48. C.-C. Chou, P.-H. Chen, F.-C. Hu, Y. Chi, S.-T. Ho, J.-J. Kai, S.-H. Liu and P.-T. Chou, J. Mater. Chem. A, 2014, 2, 5418-5426.
    49. M. Gantenbein, M. Hellstern, L. Le Pleux, M. Neuburger and M. Mayor, Chem. Mater., 2015, 27, 1772-1779.
    50. D. Maiti and S. L. Buchwald, J. Org. Chem., 2010, 75, 1791-1794.
    51. A. Hohenleutner, S. Schmidbauer, R. Vasold, D. Joosten, P. Stoessel, H. Buchholz and B. König, Adv. Funct. Mater., 2012, 22, 3406-3413.
    52. S. G. Ihn, N. Lee, S. O. Jeon, M. Sim, H. Kang, Y. Jung, D. H. Huh, Y. M. Son, S. Y. Lee, M. Numata, H. Miyazaki, R. Gomez-Bombarelli, J. Aguilera-Iparraguirre, T. Hirzel, A. Aspuru-Guzik, S. Kim and S. Lee, Adv. Sci., 2017, 4, 1600502.
    53. C. H. Hsieh, F. I. Wu, C. H. Fan, M. J. Huang, K. Y. Lu, P. Y. Chou, Y. H. Yang, S. H. Wu, I. C. Chen, S. H. Chou, K. T. Wong and C. H. Cheng, Chem. Eur. J., 2011, 17, 9180-9187.
    54. C. F. Chang, Y. M. Cheng, Y. Chi, Y. C. Chiu, C. C. Lin, G. H. Lee, P. T. Chou, C. C. Chen, C. H. Chang and C. C. Wu, Angew. Chem. Int. Ed., 2008, 47, 4542-4545.
    55. S. Lee, S. O. Kim, H. Shin, H. J. Yun, K. Yang, S. K. Kwon, J. J. Kim and Y. H. Kim, J. Am. Chem. Soc., 2013, 135, 14321-14328.
    56. J. B. Kim, S. H. Han, K. Yang, S. K. Kwon, J. J. Kim and Y. H. Kim, Chem. Commun., 2015, 51, 58-61.
    57. K. Udagawa, H. Sasabe, C. Cai and J. Kido, Adv. Mater., 2014, 26, 5062-5066.
    58. Z. Chen, L. Wang, S. Su, X. Zheng, N. Zhu, C. L. Ho, S. Chen and W. Y. Wong, ACS Appl. Mater. Interfaces, 2017, 9, 40497-40502.
    59. X. Li, J. Zhang, Z. Zhao, L. Wang, H. Yang, Q. Chang, N. Jiang, Z. Liu, Z. Bian, W. Liu, Z. Lu and C. Huang, Adv. Mater., 2018, 30, 1705005.

    QR CODE