研究生: |
黃靖雯 Huang, Jing-Wen |
---|---|
論文名稱: |
現代實驗設計與分析的新發展 New Developments on the Design and Analysis of Some Modern Experiments |
指導教授: |
鄭少為
Cheng, Shao-Wei 潘建興 Phoa, Frederick Kin Hing |
口試委員: |
曾勝滄
Tseng, Sheng-Tsiang 張明中 Chang, Ming-Chung 黃世豪 Huang, Shih-Hao 蔡欣甫 Tsai, Shin-Fu Tsai 陳瑞彬 Chen, Ray-Bing |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 115 |
中文關鍵詞: | 網絡實驗 、排序實驗 、廣義線性模型變數選擇 |
外文關鍵詞: | Network, Order-of-Addition, Dantzig |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇學位論文主要在探討有圖論結構的實驗設計與分析,其中包含了實驗單位元以及實驗因子的圖論結構造成的新型態實驗,分別稱作網絡實驗以及排序實驗。網絡實驗常見於現實生活中以人或人群為實驗單位元的實驗設計,並且在網路廣告的A/B測試當中尤為常見。而排序實驗則是常見於不同順序會產生出很不同的結果的實驗當中,例如藥物實驗和工作排程優化。
在新型態的實驗情境下,傳統的實驗設計已經不夠,因此我們討論了適合的新模型以及對其產生好處的新實驗設計。此外,我們的研究也包含了分析方法的優化,使得在廣義線性模型底下的變數選擇更有效果。在研究的過程中,我掌握了如何探討一個模型和一個設計為何存在的統計意義,也掌握了線性代數、圖論以及微積分的更多進階知識。
This dissertation primarily investigates experimental design and analysis with graph structures. It introduces novel types of experiments induced by the graph structure of experimental units and factors, referred to as network experiments and order-of-addition experiments, respectively. Network experiments are commonly seen in real-life experimental designs where individuals or groups serve as experimental units, particularly in A/B testing of online advertisements. Order-of-Addition experiments are typical in scenarios where different sequences can yield significantly different results, such as drug trials and job scheduling.
Given these novel experimental contexts, traditional experimental designs are no longer efficient. We discuss suitable new models and the corresponding good experimental designs based on these model. Additionally, our research includes the optimization of analysis methods, enhancing variable selection under generalized linear models. Throughout the research process, I have gained insights into defining models and designs, and have deepened my understanding of linear algebra, graph theory, and calculus.
Bashkirtseva, I., Ryashko, L., López, ff. G., Seoane, J. M., and Sanjuán, M. A. (2021). The effect of time ordering and concurrency in a mathematical model of chemoradiotherapy. Communications in Nonlinear Science and Numerical Simulation, 96:105693.
Bermond, A. D. and Faber, V. (1976). Decomposition of the complete directed graph into k-circuits. Journal of Combinatorial Theory, 21(2):146–155.
Besag, J. and Kempton, R. (1986). Statistical analysis of field experiments using neighbouring plots. Biometrics, 42:231–251.
Blanz, J. and Saftig, P. (2016). Parkinson’s disease: acid-glucocerebrosidase activity and alpha-synuclein clearance. Journal of Neurochemistry, 139:198–215.
Box, G. E. P. and Meyer, R. D. (1986). An analysis for unreplicated fractional factorials. Technometrics, 28:11–18.
Candes, E. and Tao, T. (2007). The dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35(6):2313–2351.
Chan, R. B., Perotte, A. J., Zhou, B., Liong, C., Shorr, E. J., Marder, K. S., Kang, U. J., Waters, C. H., Levy, O. A., Xu, Y., Shim, H. B., Pe’er, I., Di Paolo, G., and Alcalay, R. N. (2017). Elevated gm3 plasma concentration in idiopathic parkinson’s disease: A lipidomic analysis. PLoS ONE, 12.
Cuadras, C. and Arenas, C. (1990). A distance-based regression model for prediction with mixed data. Communications in Statistics A - Theory and Methods, 19:2261–2279.
Dean, A. and Lewis, S. (2006). Screening: Methods for Experimentation in Industry, Drug Discovery, and Genetics. Springer, New York, NY.
Dean, A. M., Morris, M., Stufken, J., and Bingham, D. (2015). Handbook of design and analysis of experiments, volume 7. CRC Press, Boca Raton.
Denes, J. and Keedwell, A. D. (1974). Latin Square and their Applications. English University Press, Budapest.
Ding, X., Matsuo, K., Xu, L., Yang, J., and Zheng, L. (2015). Optimized combinations of bortezomib, camptothecin, and doxorubicin show increased efficacy and reduced toxicity in treating oral cancer. Anti-cancer drugs, 26(5):547–554.
Druilhet, P. (1999). Optimality of neighbour balanced designs. Journal of Statistical Planning and Inference, 81:141–152.
Erdos, P. and Renyi, A. (1959). On random graphs i. Publicationes Mathematicae Debrecen, 6:290–297.
Fredriksen, K., Aivazidis, S., Sharma, K., Burbidge, K. J., Pitcairn, C., Zunke, F., Gelyana, E., and Mazzulli, J. R. (2021). Pathological α-syn aggregation is mediated by glycosphingolipid chain length and the physiological state of α-syn in vivo. In Proceedings of the National Academy of Sciences, volume 118, page e2108489118.
Grittith, R. E. and Stewart, R. A. (1961). A nonlinear programming technique for the optimization of continuous processing systems. Management Science, 7:370–392.
Hedayat, A. and Afsarinejad, k. (1978). Repeated measurements designs, ii. The Annals of Statistics, 6:619–628.
Horel, A. E. and Kennard, R. W. (1968). On regression analysis and biased estimation. Technometrics, 10:422–423.
Hsu, T. and Phoa, F. (2018). A smart initialization on the swarm intelligence based method for efficient search of optimal minimum energy design. Advances in Swarm Intelligence, 10941:78–87.
Inokuchi, J. I., Kanoh, H., Inamori, K. I., Nagafuku, M., Nitta, T., and Fukase, K. (2021). Homeostatic and pathogenic roles of the gm3 ganglioside. The Federation of European Biochemical Societies Journal, 289:5152–5165.
James, G. M. and Radchenko, P. (2009). Generalized dantzig selector with shrinkage tuning. Biometrika, 96:323–337.
Kiefer, J. (1958). On the nonrandomized optimality and randomized nonoptimality of symmetrical designs. The Annals of Mathematical Statistics, 29(3):675–699.
Kunert, J. and Martin, R. J. (2000). On the determination of optimal designs for an interference model. The Annals of Statistics, 28(6):1728–1742.
Kunert, J. and Mersmann, S. (2011). Optimal designs for an interference model. Journal of statistical planning and inference, 141(4):1623–1632.
Leenders, R. (2002). Modeling social influence through network autocorrelation: constructing the weight matrix. Social Networks, 24:21–47.
Lu, L. Z. and Pearce, C. E. M. (2000). Some new bounds for singular values and eigenvalues of matrix products. Annals of Operations Research, 98(1):141–148.
Luke, D. A. (2015). A user’s guide to network analysis in R, volume 72. Springer, New York.
Marley, C. J. and Woods, D. C. (2010). A comparison of design and model selection methods for supersaturated experiments. Computational Statistics and Data Analysis, 54:3158–3167.
Mee, R. W. (2020). Order-of-addition modeling. Statistica Sinica, 30:1543–1559.
Mielke, M. M., Maetzler, W., Haughey, N. J., Bandaru, V. V., Savica, R., Deuschle, C., Gasser, T., Hauser, A. K., Graber-Sultan, S., Schleicher, E., Berg, D., and Liepelt-Scarfone, I. (2013). Plasma ceramide and glucosylceramide metabolism is altered in sporadic parkinson’s disease and associated with cognitive impairment: a pilot study. PLoS ONE, 8:e73094.
Parker, B. M., Gilmour, S. G., and Schormans, J. (2017). Optimal design of experiments on connected units with application to social networks. Journal of the Royal Statistical Society Series C: Applied Statistics, 66(3):455–480.
Peng, J., Mukerjee, R., and Lin, D. (2019). Design of order-of-addition experiment. Biometrika, 106(3):683–694.
Phoa, F. K. H. (2014). The stepwise response refinement screener. Statistica Sinica, 24:197–210.
Phoa, F. K. H., Pan, Y. H., and Xu, H. (2009). Analysis of supersaturated designs via the dantzig selector. Journal of Statistical Planning and Inference, 139:2362–2372.
Rossi, R. A. and Ahmed, N. K. (2015). The network data repository with interactive graph analytics and visualization. In Proceedings of the AAAI conference on artificial intelligence, volume 29, http://networkrepository.com.
Sonnemann, E. (1982). D-optimality of complete latin squares. Series Statistics, 13(3):387–394.
Stokes, Z. (2021). Advancements in the Design and Analysis of Order-of-Addition Experiments. University of California, Los Angeles.
Stokes, Z. and Xu, H. (2022). A position-based approach for design and analysis of order-of-addition experiments. Statistica Sinica, 32(3):1467–1488.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58:267–288.
Tillson, T. W. (1980). A hamiltonian decomposition of k∗2m, 2m ≥ 8. Journal of Combinatorial Theory, Series B, 29:68–74.
Tsai, S. (2023). Dual-orthogonal arrays for order-of-addition two-level factorial experiments. Technometrics, 65(3):388–395.
Van Nostrand, R. (1995). Design of experiments where the order of addition is important. In ASA Proceedings in Section of Physical and Engineering Science, pages 155–160, Alexandria, Virginia. American Statistical Association.
Voelkel, J. (2019). The design of order-of-addition experiment. Journal of Quality Technology, 51(3):230–241.
Wang, C. and Mee, R. W. (2022). Saturated and supersaturated order-of-addition designs. Journal of Statistical Planning and Inference, 219:204–215.
Williams, E. (1949). Experimental designs balanced for the estimation of residual effects of treatments. Australian Journal of Chemistry, 2(2):149–168.
Xiao, Q., Wang, Y., Mandal, A., and Deng, X. (2022). Modeling and active learning for experiments with quantitative-sequence factors. Journal of the American Statistical Association, 119:407–421.
Xiao, Q. and Xu, H. (2021). A mapping-based universal kriging model for orderof-addition experiments in drug combination studies. Computational Statistics and Data Analysis, 157:107155.
Yang, J., Sun, F., and Xu, H. (2021). A component-position model, analysis and design for order-of-addition experiments. Technometrics, 63:212–224.
Yen, P. and Phoa, F. (1995). Traveling salesman problem via swarm intelligence. In Advances in Swarm Intelligence: 12th International Conference, ICSI 2021,
Qingdao, China, July 17–21, 2021, Proceedings, Part I 12, pages 106–115. Springer International Publishing.
Zhao, Y., Lin, D., and Liu, M. (2021). Designs for order-of-addition experiments. Journal of Applied Statistics, 48(8):1475–1495.