簡易檢索 / 詳目顯示

研究生: 吳維軒
Wu, Wei-Hsuan
論文名稱: 適用於LDPC編碼多天線系統的疊代式接收器
Design and Implememtation of an Iterative Detection and Decoding Receiver for LDPC coded MIMO Systems
指導教授: 翁詠祿
Ueng, Yeog-Luh
口試委員: 楊家驤
Yang, Chia-Hsiang
謝欣霖
Shieh, Shin-Lin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 66
中文關鍵詞: 疊代式檢測以及解碼軟式輸入以及軟式輸出的多天線系統檢測器低密度奇偶校驗檢查碼
外文關鍵詞: Iterative detection and decoding, Soft-input soft-output MIMO detector, Low-Decsity Parity-Check codes
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 據了解,低密度奇偶校驗編碼的多輸入多輸出系統的疊代檢測和解碼可以實現近容量的性能。
    本文提出了第一個真正的高速,面積高效的疊代式檢測以及解碼器,
    其中包含了一個最小均方誤差平行干擾消除的多天線檢測器和一個最小和低密度奇偶校驗檢查碼解碼器。
    本文提出層狀非重設疊代檢測和解碼器可以用來增加收斂速度和降低疊代次數。
    本文提出一個面積高效的最小均方誤差平行干擾消除的多天線檢測器設計,其中用QR分解來計算簡化反矩陣。
    本文提出一個面積高效且有效地交換軟信息檢測器和解碼器之間的接口。
    鑑於吞吐量的限制,內疊代和外疊代被合理地結合並達到其符合的性能。
    藉由實現以上所提的技術,本論文實現了一個802.11n的一種規格的多輸入多輸出系統的疊代檢測和解碼器。
    此接收器以40奈米製程所製造,998k 邏輯閘門而其面積為1.33平方毫米,最高工作頻率
    是303兆赫,418 Mb / s的吞吐量在4乘4多天線系統以及16-QAM的配置。
    該芯片的功耗為115 mW,在0.9 伏特的電壓供應下,實現能源效率275 PJ/bit。
    相較於傳統的由現有的多天線檢測器以及低密度奇偶校驗檢查碼解碼器所組成的非疊代式接收器,
    本設計達到了較好的面積和能量效率以及較好的性能。


    It is known that low-density parity-check (LDPC)-coded multiple-input
    multiple-output (MIMO) systems with iterative detection and decoding (IDD)
    can achieve near-capacity performance. This paper presents the rst true high-
    throughput, area-ecient IDD receiver, where an MMSE-PIC-based MIMO
    detector and a min-sum-based LDPC decoder are embedded. A layered non-
    resetting IDD scheduling is used to increase the error convergence rate and
    to minimize the number of inner iterations. An area-ecient minimum mean-
    square with error-parallel interference cancellation (MMSE-PIC) detector is
    devised to simplify the computationally intensive matrix inversion by leverag-
    ing QR decomposition. A detector-decoder interface with ecient scheduling is
    proposed to exchange soft messages between the detector and decoder. Given
    the throughput speci cation, inner and outer loops are optimally combined
    to maximize the error performance. As the proof of concept, the proposed
    IDD receiver is implemented for the IEEE 802.11n standard. Fabricated in
    a 40nm CMOS process, the IDD receiver integrates 998k logic gates in 1.33
    mm2. The maximum operating frequency is 303 MHz, achieving a through-
    put of 418 Mb/s for a 44 16-QAM con guration. The chip dissipates 115
    mW at 0.9 V, achieving an energy eciency of 275 pJ/bit. Compared to the
    conventional non-iterative receivers, composed of state-of-the-art MIMO de-
    tectors and LDPC decoders, this work achieves even higher area and energy
    eciencies despite the improved error performance.

    1 Introduction 1 2 LDPC-Coded MIMO Systems 7 2.1 System Description . . . . . . . . . . . . . . . . 7 2.2 IDD Receiver . . . . . . . . . . . . . . . . . . . 8 2.3 MMSE-PIC Detector . . . . . . . . . . . . . . . . 10 2.4 LDPC Decoder . . . . . . . . . . . . . . . . . . 12 2.5 IDD Performance . . . . . . . . . . . . . . . . . 14 2.6 Implementation Challenges . . . . . . . . . . . . 16 3 MIMO compliant LDPC decoder 18 3.1 Non-Resetting Receiver . . . . . . . . . . . . . 19 3.2 Layered LDPC Decoding . . . . . . . . . . . . . . 22 3.3 Decoder-Detector Interface . . . . . . . . . . . .23 3.4 Fractional Inner Iteration and Early Termination. 26 4 Area-Ecient MMSE-Based MIMO Detector 29 4.1 Division-Free Matrix Inversion and LLR Computation30 4.2 Hardware Complexity Reduction . . . . . . . . . . 33 5 Integration of LDPC Decoder and MMSE-PIC Detector 36 6 Experimental Verification 43 6.1 Chip implementation . . . . . . . . . . . . . . . 43 6.2 Comparison with prior IDD receiver . . . . . . . .44 6.3 Comparison with non-iterative receiver . . . . . .46 7 Conclusion 49 8 Appendix 50

    [1] G. J. Foschini, “Layered space-time architecture for wireless communications
    in a fading environment when using multi-element antennas,”
    Bell Labs Tech. Journal, pp. 41-59, Autumn 1996.
    [2] C. Berrou, and A. Glavieux, “Near optimal error correcting coding and
    decoding: turbo codes,” IEEE Trans. Commun., pp. 1261-1271, Oct.
    1996.
    [3] R. G. Gallager, “Low density parity check codes,” IRE Trans. Inf.
    Theory, vol. IT-8, no. 1, pp. 21-28, Jan. 1962.
    [4] D. J. C. MacKay, “Good error-correcting codes based on very sparse
    matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, Mar.
    1999.
    [5] A. Stefanov and T. M. Duman, “Turbo coded modulation for systems
    with transmit and receive antenna diversity over block fading channels:
    system models, decoding approaches, and practical considerations,”
    IEEE J. Select. Areas Commun., vol. 19, pp. 958-968, May 2001.
    [6] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a
    multiple-antenna channel,” IEEE Trans. Commun., vol. 51, No. 3, pp.
    389-399, Mar. 2003.
    [7] G. Yue and X. Wang, “Optimization of irregular repeat-accumulate
    codes for MIMO systems with iterative receivers,” IEEE Trans. Wireless
    Commun., vol. 4, No. 6, pp. 2843-2855, Nov. 2005.
    [8] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density
    parity-check codes for modulation and detection,” IEEE Trans. Commun.,
    vol. 52, No. 4, pp. 670-678, Apr. 2004.
    [9] J. Hou, P. H. Siegel, and L. B. Milstein, “Design of multi-input
    multioutput systems based on low-density parity-check codes,” IEEE
    Trans. Commun., vol. 53, No. 4, pp. 601611, Apr. 2005.
    [10] Y.-L. Ueng, C.-J. Yeh, M.-C. Lin, and C.-L. Wang, “Turbo coded
    multiple-antenna systems for near-capacity performance,” IEEE J. Select.
    Areas in Commun., vol. 27, No. 6, pp. 954-964, Aug. 2009.
    [11] IEEE Draft Standard; Part 11: Wireless LAN Medium Access Control
    (MAC) and Physical Layer (PHY) specifications; Amendment 4: Enhancements
    for Higher Throughput, IEEE P802.11n/D3.0, Sep. 2007.
    [12] F. Borlenghi, E. M. Witte, G. Ascheid, and H. Meyr, “A 2.78 mm2 65
    nm CMOS gigabit MIMO iterative detection and decoding receiver,”
    Proc. of the ESSCIRC, pp. 65-68, Sep. 2012.
    [13] N. Preyss, A. Burg, and C. Studer, “Layered detection and decoding
    in MIMO wireless systems,” in Proc. Conference on Design and
    Architectures for Signal and Image (DASIP), pp. 1-8, Oct. 2012.
    [14] A. Burg, M. Wenk, M. Zellweger, M. Wegmueller, N. Felber, and W.
    Fichtner, “VLSI implementation of the sphere decoding algorithm,”
    in Proc. IEEE Europ. Solid State Circuits Conf. (ESSCIRC), Leuven,
    Belgium, pp. 303-306, Sep. 2004.
    [15] C.-H. Liao, T.-P. Wang, and T.-D. Chiueh, “A 74.8 mW soft-output
    detector IC for 8x8 spatial-multiplexing MIMO communications,” IEEE
    J. Solid-State Circuits, vol. 45, pp. 411-421, Feb. 2010.
    [16] E. M. Witte, F. Borlenghi, G. Ascheid, R. Ascheid, R. Leupers, and
    H. Meyr, “A scalable VLSI architecture for soft-input soft-output single
    tree-search sphere decoding,” IEEE Trans. Circuits Syst. II, vol. 57, no.
    9, pp. 706-710, Sep. 2010.
    [17] K.-W. Wong, C.-Y. Tsui, R.-K. Cheng and W.-H. Mow, “A VLSI
    architecture of a K-best lattice decoding algorithm for MIMO channels,”
    in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), vol. 3, pp. 273-
    276, 2002.
    [18] A. Burg, S. Hane, D. Perels, P. Luethi, N. Felber, and W. Fichtner,
    “Algorithm and VLSI architecture for linear MMSE detection in MIMOOFDM
    systems,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS),
    Kos, Greece, pp. 4102-4105, May 2006.
    [19] J. Eilert, D.Wu, and D. Liu, “Implementation of a programmable linear
    MMSE detector for MIMO-OFDM,” in IEEE Int. Conf. Acoustics,
    Speech, and Signal Process. (ICASSP), Las Vegas, NV, USA, pp. 5396-
    5399, Mar. 2008.
    [20] S. Eberli, D. Cescato, and W. Fichtner, “Divide-and-conquermatrix
    inversion for linear MMSE detection in SDR MIMO receivers,” in Proc.
    IEEE NORCHIP, Trondheim, Norway, pp. 162-167, Nov. 2008.
    [21] C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of softinput
    soft-output MIMO detection using MMSE parallel interference
    cancellation,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1754-
    1765, July 2011.
    [22] R. M. Tanner, “A recursive approach to low-complexity codes,” IEEE
    Trans. Inf. Theory, vol. IT-27, no. 5, pp. 533-547, Sep. 1981.
    [23] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity
    iterative decoding of low-density parity check codes based on belief
    propagation,” IEEE Trans. Commun., vol. 47, no. 5, pp. 673-680, May
    1999.
    [24] J. Chen, Reduced complexity decoding algorithms for low-density paritycheck
    codes and turbo codes, Ph.D. dissertation, Dept. Electrical Eng.,
    Univ. Hawaii, Honolulu, HI, 2003.
    [25] J. Chen and M. C. Fossorier, “Decoding low-density parity-check codes
    with normalized APP-based algorithm,” in Proc. IEEE GLOBECOM,
    vol. 2, pp. 1026-1030, Nov. 2001.
    [26] B. Xiang, D. Bao, S. Huang, and X. Zeng, “An 847-955 Mb/s 342-397
    mW dual-path fully-overlapped QC-LDPC decoder for WiMAX system
    in 0.13 m CMOS,” IEEE J. Solid-State Circuits, vol. 46, pp. 1416-1432,
    June 2011.
    [27] X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, “An 8.29 mm2 52 mW
    multi-mode LDPC decoder design for mobile WiMAX system in 0.13
    m CMOS Process,” IEEE J. Solid-State Circuits, vol. 43, pp. 672-683,
    Mar. 2008.
    [28] C.-H. Liu, S.-W. Yen, C.-L. Chen, H.-C. Chang, C.-Y. Lee, Y.-S. Hsu
    and S.-J. Jou, “An LDPC decoder chip based on self-routing network
    for IEEE 802.16e applications,” IEEE J. Solid-State Circuits, vol. 43,
    pp. 684-694, Mar. 2008.
    [29] C.-H. Liu, C.-C. Lin, S.-W. Yen, C.-L. Chen, H.-C. Chang, C.-Y. Lee, Y.-
    S. Hsu, and S.-J. Jou, “Design of a multimode QC-LDPC decoder based
    on shift-routing network,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol.
    56, no. 9, pp. 734 -738, Sep. 2009.
    [30] M.-M. Mansour and N.-R. Shanbhag, “High-throughput LDPC decoders,”
    IEEE Trans. VLSI Systems, vol. 11, no. 6, pp. 976-996, Dec.
    2003.
    [31] J. Zhang and M.-P.-C. Fossorier, “Shuffled iterative decoding,” IEEE
    Trans. Commun., vol. 53, no. 2, pp. 209-213, Feb. 2005.
    [32] Y.-L. Ueng, Y.-L. Wang, C.-Y. Lin, J.-Y. Hsu, and Pangan Ting,
    “Modified layered message passing decoding with dynamic scheduling
    and early termination for QC-LDPC codes,” in Proc. IEEE Int. Symp.
    Circuits and Systems (ISCAS), , pp. 121-124, May 2009.
    [33] Y.-L. Ueng, C.-J. Yang, K.-C. Wang, and C.-J. Chen, “A multimode
    shuffled iterative decoder architecture for high-rate RS-LDPC codes,”
    IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 57, no. 10, pp. 2790-
    2803, Oct. 2010.
    [34] Y.-L. Wang, Y.-L. Ueng, C.-L. Peng, and C.-J.Yang, “Processing-task
    arrangement for a low-complexity full-mode WiMAX LDPC codec,”
    IEEE Trans. Circuits Syst. I, vol. 58, no. 2, pp. 415-428, Feb. 2011.
    [35] Y.-L. Ueng, B.-J. Yang, C.-J. Yang, H.-C. Lee, J.-D. Yang, “An efficient
    multi-standard LDPC decoder design using hardware-friendly shuffled
    decoding,” IEEE Trans. Circuits Syst. I, vol. 60, no. 3, pp. 743-756,
    Mar. 2013.
    [36] I. B. Collins, M.R.G. Butler, and M. R. McKay, “Low complexity
    receiver design for MIMO bit-interleaved coded modulation,” In Proc.
    IEEE 8th Int. Symp. Spread Spectrum Techniques and Applications
    (ISSSTA), Sydney, Australia, pp. 12-16, Aug. 2004.
    [37] A. J. Laub, Matrix Analysis for Scientists and Engineers, SIAM, 2004.
    [38] D. Patel, M. Shabany, and P. G. Gulak, “A low-complexity high-speed
    QR decomposition implementation for MIMO receivers,” In Proc. IEEE
    Int. Symp. Circuits and Systems (ISCAS), pp. 1409-1412, May 2009.
    [39] A. Tomasoni, M. Ferrari, D. Gatti, F. Osnato, and S. Bellini, “A low
    complexity turbo MMSE receiver for W-LAN MIMO systems,” in Proc.
    IEEE Int. Conf. Commun. (ICC), Istanbul, Turkey, vol. 9, pp. 4119-4124,
    2006.
    [40] K. K. Parhi VLSI Digital Signal Processing Systems: Design and
    Implementation, Dec. 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE