研究生: |
楊蕙嘉 Yang, Hui Chia |
---|---|
論文名稱: |
以評論內容為基礎之評論特質趨勢分析模式 The Model for Sentiment Analysis of Comments |
指導教授: |
侯建良
Hou, Jiang Liang |
口試委員: |
張國浩
廖崇碩 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 299 |
中文關鍵詞: | 情緒分析 、評論特質 、趨勢分析 、分群方法 |
外文關鍵詞: | comment characteristics, grouping method |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當企業推出新產品/服務時,消費者往往透過各類管道針對該產品/服務發表評論,並透過評論表達其對於產品/服務之關注重點、投入情緒、整體評價等,此些評論特質會隨時間產生趨勢的變化(如關注重點的改變、正負情緒比例的增減等),而企業可透過此些趨勢的變化掌握市場的最新需求,以了解消費者偏好之變動趨向,進而發展符合消費者期待之產品/服務。另一方面,消費者亦可透過其關注之產品/服務的相關評論趨勢了解目前市場的輿論與評價趨向,並作出更切合市場脈動趨向之消費決策。然而,此些評論往往包含過多複雜資訊,企業如欲發展符合消費者期待之產品/服務需花費更多時間分析評論內容中所透露之消費者的關注重點、投入情緒、整體評價等趨向。另一方面,消費者為了解其他消費者欲傳遞之產品/服務的正負評價亦須投入更多精力自龐大且複雜之資料中取得產品/服務相關資訊(如使用情形、使用心得、購買價格等)。
為解決企業與消費者在處理評論內容過程中所面臨之各項問題,本研究乃於前置階段中先蒐集評論者於網際網路中針對特定產品/服務所發表之評論內容,並整理各評論內容之評論發佈時間、關注重點、投入情緒、整體評價等特質,再依據此些特質之整理結果建置詞彙庫;之後,本研究乃依據此些評論內容之整理結果發展一套「以評論內容為基礎之評論特質趨勢分析模式」方法。而「以評論內容為基礎之評論特質趨勢分析模式」方法可區分為「評論特質擷取」、「評論資料分群」及「評論特質統整及分佈趨勢分析」等三大階段。其中,「評論特質擷取」階段可依前置階段所建置之詞彙庫擷取評論內容的相關特質(如關注重點、投入情緒、整體評價等);「評論資料分群」階段乃依評論者發表產品/服務之評論內容的發佈時間將各評論進行分群,以作為後續階段進行評論內容趨勢分析之基礎;「評論特質統整及分佈趨勢分析」階段則將各評論內容之關注點、情緒傾向、評價判斷等三大特質以視覺化方式呈現,以凸顯其內容隨時間變化之趨勢。
未來,企業在新產品/服務推出時,即可參考過去消費者對於同性質之產品/服務所透露的關注重點、投入情緒、整體評價等特質之趨勢,讓新產品/服務可更符合消費者需求。另一方面,消費者亦可透過此些趨勢之變化了解目前市場的輿論與評價趨向,進而選擇更合適之產品/服務。
As a company releases a new product service to the market, consumers often express their interests, emotional tendencies and overall evaluations over the internet through comments. The trend of comment characteristics always changes with time. Enterprises can capture the latest market demand based on the tendency explored. On the other hand, consumers can also make their own decisions by these references. However, complex information might exist in the comments and thus companies have to spend much time in analyzing comments characteristics. Furthermore, consumers should also dedicate more efforts to acquire information about product usage, feedbacks and t price from the complicated information. In order to solve the problems, this study develops a model for sentiment analysis of comments. It can be used to visuallyreveals the tendency of the comments. By applying the proposed model, enterprises can refer to the latest trend of interests, emotional tendencies and overall evaluation of consumers. As a result, new products / services can fit more to consumer needs. Moreover, the consumers can acquire useful opinions from the public in order to select more suitable products or services.
1. Abilhoa, W. D. and de Castro, L. N., 2014, “A Keyword Extraction Method from Twitter Messages Represented as Graphs,” Applied Mathematics and Computation, Vol. 240, pp. 308-325.
2. Ahmed, M. A., Azuraliza, A. B. and Mohd, Z. A., 2014, “Fast Dynamic Clustering SOAP Messages Based Compression and Aggregation Model for Enhanced Performance of Web Services,” Journal of Network and Computer Applications, Vol. 41, pp. 80-88.
3. Akter, R. and Chung, Y., 2013, “An Evolutionary Approach for Document Clustering,” IERI Procedia, Vol. 4, pp. 370-375.
4. Alush, A., Friedman, A. and Goldberger, J., 2016, “Pairwise Clustering Based on the Mutual-information Criterion,” Neurocomputing, Vol. 182, pp. 284-293.
5. Alvaro G., 2015, “Techniques to Reduce Cluttering of RDF Visualizations,” Future Generation Computer Systems, Vol. 53, pp. 152-156.
6. Amiria, E. and Mahmoudi, S., 2016, “Efficient Protocol for Data Clustering by Fuzzy Cuckoo Optimization Algorithm,” Applied Soft Computing, Vol. 41, pp. 15-21.
7. Amrutha, B. and Mintu, P., 2015, “Keyword Based Tweet Extraction and Detection of Related Topics,” Procedia Computer Science, Vol. 46, pp. 364-371.
8. Arangoa, R. B., Camposa, A. M., Combarroa, E. F., Canasb, E. R. and Díaz, I., 2016, “Mapping Cultivable Land from Satellite Imagery with Clustering Algorithms,” International Journal of Applied Earth Observation and Geoinformation, Vol. 49, pp. 99-106.
9. Bakr, A. M., Ghanem, N. M. and Ismail, M. A., 2015, “Efficient Incremental Density-based Algorithm for Clustering Large Datasets,” Alexandria Engineering Journal, Vol. 54, pp. 1147-1154.
10. Bao, H and Deng, Z, 2012, “An Extended Keyword Extraction Method,” Physics Procedia, Vol. 24, pp. 1120-1127.
11. Bayá, A. E., Larese, M. G. and Granitto, P. M., 2016, “Clustering Using PK-D: A Connectivity and Density Dissimilarity,” Expert Systems with Applications, Vol. 51, pp. 151-160.
12. Bonzanini, M., Martinez-Alvarez, M. and Roelleke, T., 2012, "Opinion Summarisation through Sentence Extraction: An Investigation with Movie Reviews," Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1121-1122.
13. Cai, X. and Li, W., 2011, “A Spectral Analysis Approach to Document Summarization: Clustering and Ranking Sentences Simultaneously,” Information Sciences, Vol. 181, pp. 3816-3827.
14. Chang, D., Zhao, Y., Zheng, C. and Zhang, X., 2012, “A Genetic Clustering Algorithm Using a Message-based Similarity Measure,” Expert Systems with Applications, Vol. 39, pp. 2194-2202.
15. Chen, Y. H., Lu, J. L. and Tsai, M. F., 2014, “Finding Keywords in Blogs: Efficient Keyword Extraction in Blog Mining via User Behaviors,” Expert Systems with Applications, Vol. 41, pp. 663-670.
16. Choudharia, K. and Bhallab, V. K., 2015, “Video Search Engine Optimization Using Keyword and Feature Analysis,” Procedia Computer Science, Vol. 58, pp. 691-697.
17. Choudharya, A., Rishib, R. and Ahlawatc, S., 2013, “A New Approach to Detect and Extract Characters from Off-Line Printed Images and Text,” Procedia Computer Science, Vol. 17, pp. 434-440.
18. Eckart, U., Claudio, G., Eckhard, H. and Ian, A., 2013, “Data Mining and Visualization of Diagnostic Messages for Condition Monitoring,” Procedia CIRP, Vol. 720, pp. 225-228.
19. Ercan, G. and Cicekli, I., 2007, “Using Lexical Chains for Keyword Extraction,” Information Processing and Management, Vol. 43, pp. 1705-1714.
20. Hao, Z. and GuangLong, D., 2016, “Improvement of Distributed Clustering Algorithm Based on Min-cluster,” Optik, Vol. 127, pp. 3878-3881.
21. Hassanpoura, S. and Langlotz, C. P., 2015, “Information Extraction from Multi-institutional Radiology Reports,” Artificial Intelligence in Medicine, Vol. 66, pp. 29-39.
22. Heinicke, A., Liao, C., Walbaum, K., Bützler, J. and Schlick, C. M., 2015, “User Centered Evaluation of Interactive Data Visualization Forms for Document Management Systems,” Procedia Manufacturing, Vol. 3, pp. 5427-5434.
23. Imran, K. and Arun, K., 2013, “Knowledge Extraction from Survey Data Using Neural Networks,” Procedia Computer Science, Vol. 20, pp. 433-438..
24. Isabel, T., Jesús, S., Horacio, P. S. and José, M. C., 2016, “Parallel Implementation of Fuzzy Minimals Clustering Algorithm,” Expert Systems with Applications, Vol. 48, pp. 35-41.
25. Jennifer, B., Maria, M. V., Tobias, K., Thilo, S., Alexander, B., Michael, R. B. and Michael, J., 2015, “MARK-AGE Data Management: Cleaning, Exploration and Visualization of Data,” Mechanisms of Ageing and Development, Vol. 151, pp. 38-44.
26. Jun, O. and Shun, I., 2011, “Important Sentence Extraction Using Contextual Semantic Network,” Procedia - Social and Behavioral Sciences, Vol. 27, pp. 86-94.
27. Jun, S., Park, S. S. and Jang, D. S., 2014, “Document Clustering Method Using Dimension Reduction and Support Vector Clustering to Overcome Sparseness,” Expert Systems with Applications, Vol. 41, pp. 3204-3212.
28. Lee, L. H., Isa, D., Choo, W. O. and Chue, W. Y., 2012, “High Relevance Keyword Extraction Facility for Bayesian Text Classification on Different Domains of Varying Characteristic,” Expert Systems with Applications, Vol. 39, pp. 1147-1155.
29. Lehmann, S., Schwanecke, U. and Dorner, R., 2010, “Interactive Visualization for Opportunistic Exploration of Large Document Collections,” Information Systems, Vol. 35, pp. 260-269.
30. Liang, Z. and Chen, P., 2016, “Delta-density Based Clustering with a Divide-and-conquer Strategy: 3DC Clustering,” Pattern Recognition Letters, Vol. 73, pp. 52-59.
31. Luis, T., 2015, “Evaluation of Visualization of a Fuzzy-Based Recommender System for Political Community-Building,” Procedia Computer Science, Vol. 62, pp. 116-125.
32. Ma, Y., Wang, Y. and Jin, B., 2014, “A Three-phase Approach to Document Clustering Based on Topic Significance Degree,” Expert Systems with Applications, Vol. 41, pp. 8203-8210.
33. Maharani, W., Widyantoro, D. H. and Khodra, M. L., 2015, “Aspect Extraction in Customer Reviews Using Syntactic Pattern,” Procedia Computer Science, Vol. 59, pp. 244-253.
34. Moloshnikov, I. A., Sboev, A. G., Rybka, R. B. and Gydovskikh, D. V., 2015, “An Algorithm of Finding Thematically Similar Documents with Creating Context-semantic Graph Based on Probabilistic-entropy Approach,” Information Systems, Vol. 66, pp. 297-306.
35. Nagoria, M. and Joshib, M., 2013, “Methods and Algorithms for Extracting Values from MRS Graph for Brain Tumour Detection,” IERI Procedia, Vol. 4, pp. 331-336.
36. Nazemia, K., Burkhardta, D., Gintersc, E. and Kohlhammera, J., 2015, “Semantics Visualization – Definition, Approaches and Challenges,” Procedia Computer Science, Vol. 75, pp. 75-83.
37. Nicholas, D., Mor, N. and Funda, K.S., 2010, “Diamonds in the Rough: Social Media Visual Analytics for Journalistic Inquiry,” Analytics Science and Technology, Vol. 29, pp. 115-122.
38. Pak, A. and Paroubek, P., 2010, “Twitter as a Corpus for Sentiment Analysis and Opinion Mining,” Proceedings of the 7th Conference on International Language Resources and Evaluation, pp. 1320-1326.
39. Panapakidis, I. P., 2016, “Clustering Based Day-ahead and Hour-ahead Bus Load Forecasting Models,” Electrical Power and Energy Systems, Vol. 80, pp. 171-178.
40. Peng, M., Gao, B., Zhu, J., Huang, J., Yuan, M. and Li, F., 2016, “High Quality Information Extraction and Query-oriented Summarization for Automatic Query-reply in Social Network,” Expert SystemsWithApplications, Vol. 44, pp. 92-101.
41. Perla, V. E., Rosario, M. P., Sodel, V. R., Arturo, M. S. and Jezreel, M., 2016, “Knowledge Representation and Information Extraction for Analysing Architectural Patterns,” Science of Computer Programming, Vol. 121, pp. 176-189.
42. Preethi, P. G., Uma, V. and Kumar, A., 2015, “Temporal Sentiment Analysis and Causal Rules Extraction from Tweets for Event Prediction,” Procedia Computer Science, Vol. 48, pp. 84-89.
43. Punithaa, S. C. and Punithavalli, M., 2012, “Performance Evaluation of Semantic Based and Ontology Based Text Document Clustering Techniques,” Procedia Engineering, Vol. 30, pp. 100-106.
44. Saelan, A. and Purwarianti, A., 2013, “Generating Mind Map from Indonesian Text using Natural Language Processing Tools,” Procedia Technology, Vol. 11, pp. 1163-1169.
45. Schäfer, E., Heiskanen, J., Heikinheimo, V. and Pellikka, P., 2016, “Mapping Tree Species Diversity of a Tropical Montane Forest by Unsupervised Clustering of Airborne Imaging Spectroscopy Data,” Ecological Indicators, Vol. 64, pp. 49-58.
46. Shigemoria, T., Harbib, Z., Kawanakaa, H., Hicksb, Y., Setchib, R., Takasea, H. and Tsuruoka, S., 2015, “Feature Extraction Method for Clock Drawing Test,” Procedia Computer Science, Vol. 60, pp. 1707-1714.
47. Singh, V. K., Waila, P., Piryania, R. and Uddina, A., 2013, “Computational Exploration of Theme-based Blog Data using Topic Modeling, NERC and Sentiment Classifier Combine,” AASRI Procedia, Vol. 4, pp. 212-222.
48. Siqi, Z., Lin, Z., Jehan, W. and Venu, V., 2010, “Analyzing Twitter for Social TV: Sentiment Extraction for Sports,” FutureTV Workshop, Vol. 720, pp. 140-145.
49. Skalamera, J. and Hummer, R. A., 2016, “Educational Attainment and the Clustering of Health-related Behavior among U.S. Young Adults,” Preventive Medicine, Vol. 84, pp. 83-89.
50. Stoykovaa, V. and Petkova, E., 2012, “Automatic Extraction of Mathematical Terms for Precalculus,” Procedia Technology, Vol. 1, pp. 464-468.
51. Tarik, C., Chris, W. M., Robert, F., Diane, F. and Kwan, L. M., 2014, “Visualization Techniques for Categorical Analysis of Social Networkswith Multiple Edge Sets,” Social Networks, Vol. 37, pp. 56-64.
52. Tsai, F. S., 2011, “Dimensionality Reduction Techniques for Blog Visualization,” Expert Systems with Applications, Vol. 38, pp. 2766-2773.
53. Usui, S., Palmes, P., Nagata, K., Taniguchi, T. and Uedac, N., 2007, “Keyword Extraction, Ranking, and Organization for the Neuroinformatics Platform,” BioSystems, Vol. 88, pp. 334-342.
54. Wang, P., Xu, B., Xu, J., Tian, G., Liu, C. L. and Hao, H., 2016, “Semantic Expansion Using Word Embedding Clustering and Convolutional Neural Network for Improving Short Text Classification,” Neurocomputing, Vol. 174, pp. 806-814.
55. Xu, Y. M., Wang, C. D. and Lai, J. H., 2016, “Weighted Multi-view Clustering with Feature Selection,” Pattern Recognition, Vol. 53, pp. 25-35.
56. Yu, J., Li, C., Hong, W., Li, S. and Mei, D., 2015, “A New Approach of Rules Extraction for Word Sense Disambiguation by Features of Attributes,” Applied Soft Computing, Vol. 27, pp. 411-419.