簡易檢索 / 詳目顯示

研究生: 郭佳東
Kuo, Chia-Tung
論文名稱: 支援多層級、多重速率摺疊式負載平衡布可夫馮紐曼交換機之核心交換機設計與實作 part(1)-核心交換機
Design and Implementation of Folded and Multi-rack, Multi-rate Supported Load Balanced Birkhoff-von Neumann Switches part(1)-Core Switch
指導教授: 李端興
Lee, Duan-Shin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 50
中文關鍵詞: 交換機
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前的交換機研究中,負載平衡布可夫馮紐曼交換機是唯一證明可以達到低複雜度和100%交換效能的交換機架構。 但是,要將交換機規模做大,交換機核心的封包暫存器設計也是一大挑戰。過去,我們提出摺疊式架構, 將原本在交換機核心的虛擬輸出佇列(VOQ)分配到每張線卡上,交換機核心可以不受交□機節點流量分佈的影響,將集中式的虛擬輸出佇列的工作分配到各線卡上,自己只是單純的執行事先定義好的交換配對,使得交換核心的控制複雜度大大降低且此複雜度與交換機大小無關。如此一來,便可以簡化交換核心的設計。但是,這樣的成果,基於一大型S-TDM交換核心存在的假設上,要如何才可以建構出一個大型、彈性且可擴充型高的S-TDM交換網路,仍是一大挑戰。
    為了實現此一大型S-TDM的交換網路,較彈性的方式就是以多個機櫃,去建造一符合需求的交換網路。我們持續以負載平衡布可夫馮鈕曼交換機架構為底稿,加以改進,提出支援多層級機櫃,支援多重速率線卡的可摺疊式架構,一來可以利用Tree Topology Multiplexed S-TDM遞迴擴展的特性簡化topology的複雜度,實現以多層級機櫃的方式建造出實體的大型S-TDM交換網路。二來這個設計的一個特性是Tree Topology Multiplexed作多工的收容交換,所以,我們可以將低速和高速線卡分別收容在低速和高速的交換層級,可以有效將來自不同速率連線的封包作交換,並達到100%的交換效能。
    此外,我們所提出的架構不僅可以實現一多層級的分散式系統所組成的實體大型交換網路,並可以針對高低速的線卡分別收容在高低速交換層級,而且,它依然具備相當好的對稱性,所以,我們依然可以利用摺疊的特性,將原本集結在中間級的虛擬輸出佇列分配到每張線卡上。

    將這個架構應用在傳統網路核心層上,可以利用負載平衡特性和100%交換效能的特性,解決長久以來在核心層的問題:省去封包逐級檢驗的工作以簡化目前網路封包的轉送機制,解決最短路徑壅塞的問題並充份發揮網路的頻寬,以及做到端點到端點的頻寬供應保證。
    我們期許能在負載平衡布可夫馮紐曼交換機的基礎下,輔以我們的設計和改進,達成快速且100%網路封包交換效能,且複雜度低、擴充性高,更能以最低的成本設計出滿足不同速率需求的交換機,以符合新一代交換機的需求。


    Contents 序言 I 摘要 II CONTENTS IV FIGURES VI CHAPTER1 MOTIVATION AND INTRODUCTION 1 1.1 INTRODUCTION 1 1.2 OUTLINE OF THIS PROPOSAL 2 CHAPTER2 FEATURES AND INNOVATION OF OUR DESIGN 3 2.1 TREE TOPOLOGY MULTIPLEXED MULTI-RACK STDM SWITCHING NETWORK CONSTRUCTION 4 2.2 PORT REMAPPING FUNCTION TRANSLATION 4 2.3 MULTI-RATE SUPPORTED AGGREGATED STDM 4 2.4 MULTI-STAGE FOLDED ARCHITECTURE 5 2.5 FAULT-TOLERANT SWITCH ARCHITECTURE 5 2.6 SYNCHRONOUS SWITCH 6 CHAPTER3 CHALLENGES AND DESIGN SOLUTIONS 7 3.1 CHALLENGES 7 3.1.1 Rate aggregated constructure 7 3.1.2 Routing table complexity 7 3.1.3 Shortest path conjestion 8 3.2 DESIGN SOLUTIONS 9 3.2.1 Load-balanced Birkhoff-von Neumann Switch 9 3.2.2 Folded Architecture Design 9 3.2.3 Recursive STDM Construction 11 3.2.4 Isomorphism 12 3.2.5 Multi-rack and Folded Architecture 15 CHAPTER 4 SYSTEM ARCHITECTURE 19 4.1 ASSUMPTION 20 4.2 SYSTEM OPERATION 21 4.2.1 Virtual Input Queue Buffer (VIQ) 22 4.2.2 Rate-aggregated STDM & Embedded STDM 22 4.2.2 First Stage Switch 22 4.2.3 Virtual Output Queue Buffer (VOQ) 23 4.2.4 Second Stage Switch 23 4.2.5 Re-sequencing Buffer 24 CHAPTER 5 VIRTUAL INPUT QUEUE, EMBEDDED STDM & RATE-AGGREGATED STDM 25 5.1 MAIN ARCHITECTURE 26 5.2 SWITCH FABRIC DESIGN 27 5.3 SERDES INTERFACE 36 5.4 SYNCHRONOUS PROTOCOL 42 CHAPTER 6 CONCLUSION AND FUTURE WORK 48 REFERENCE 49

    Reference

    [1] I. Keslassy, S.-T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard, and N. McKeown, “Scaling internet routers using optics,” in Proc. ACM SIGCOMM ’03, Karlsruhe, Germany, Aug. 2003.
    [2] Y. Shen, S. Jiang, S. S. Panwar, and H. J. Chao, "Byte-Focal: a practical load-balanced switch," IEEE Workshop on High Performance Switching and Routing, Hong Kong, May 2005.
    [3] C. Koksal, R. Gallager, and C. Rohrs, “Rate quantization and service quality over single crossbar swtiches,” IEEE INFOCOM 2004.
    [4] J.-J. Jaramillo, F. Milan, and R. Srikant, “Padded frames: a novel algorithm for stable scheduling in load-balanced switches.”
    [5] J. Gripp, J.E. Simsarian, P. Bernasconi, J.D. Le Grange, L. Zhang, L. Buhl, D. Stiliadis, D.T. Neilson, M. Zirngibl, “Load balanced optical packet router based on 40Gb/s wavelength converters and time buffers.”
    [6] Raymond Yim, Natasha Devroye, Vahid Tarokh and H. T. Kung, “Achieving fairness in generalized processor sharing for Network Switches.”
    [7] C.-S Chang, D.-S. Lee and Y.-S. Jou, “Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering,” Computer Communications, Vol. 25, pp. 611-622, 2002.
    [8] A. Kundu and U. Mukherjee, “Promoting the Benefits of Modular Communications Platforms ,” http://www.intel.com/technology/magazine/standards/advancedtca-standard-0205.htm.
    [9] Intel Corporation, “The fast track to new services,” http://www.intel.com/technology/mod_com/downloads/301941.pdf.
    [10] Intel Corporation, “The next big idea in service-oriented networks,” http://www.intel.com/technology/mod_com/bigidea/english.pdf.
    [11] R. Goke and J. Lipovski, "Banyan Networks for Partitioning Multiprocessor Systems," Proc. First Aneural networkual Sump. Comut. Architect., pp. 21-28, Dec. 1973.
    [12] S.-Y. R. Li. Algebraic Switching Theory and Broadband Applications. Academic Press, 2001
    [13] V. Benes: "Optimal Rearrangeable Multistage Connecting Networks", Bell Systems Technical Journal, vol. 43, no. 7, July 1964, pp. 1641-1656.

    [14] CSIX, CSIX-L1: Common switch interface specification-L1, http://www.oiforum.com/public/documents/csixL1.pdf.
    [15] Design and Implementation of Folded and Multi-rack, Multi-rate Supported
    Load-Balancing Birkhoff-von Neumann Switches part(2)-Linecard

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE