研究生: |
詹益泉 Chan, Yi Chuan |
---|---|
論文名稱: |
雙鉬四鍵錯合物與有機鋅、主族試劑及小分子的反應 Reactions of the Mo-Mo Quadruple Bond with Organozinc / Main Group Reagents and Small Molecules |
指導教授: |
蔡易州
Tsai, Yi Chou |
口試委員: |
季昀
尤禎祥 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | 四鍵 、有機鋅 、主族試劑 、雙鉬四鍵 |
外文關鍵詞: | Quadruple Bond, Organozinc, Main Group, Small Molecules |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以高立體阻礙的PhB[N-2,6-iPr2C6H3)]2雙牙雙胺配基合成出的雙鉬金屬四重鍵Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2(C7H8) (1),用其低配位與低價數的性質與有機鋅、主族試劑及小分子進行反應。錯合物1與一當量有機鋅化合物如二苯基鋅、二甲基鋅及二乙基鋅反應,得到雙鉬三鍵錯合物cis-(R-Mo)2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = Ph (2),Me (3),Et (4)),有機鋅化合物進行氧化加成以順式(cis)方式配位在雙鉬原子上,並脫去鋅原子。
將錯合物1與與第十六族的硫元素反應則會得到兩種產物,為具有一個硫原子配基之錯合物(μ-S)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (5)及過硫配基錯合物(μ-κ2-S2)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (6),將其近一步地利用鉀石墨(KC8)還原,則會得到具有超硫化配基之錯合物(κ2-S2Mo)2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (7),而將錯合物7與三當量的三苯基膦反應,可成功將錯合物5單離出。但將錯合物1與第十六族的硒或碲反應卻只能得到單一原子架橋之產物(μ-E)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (E = Se (8),Te (9))。有趣的是錯合物9於溶劑下時容易分解回錯合物1。
將錯合物1與一當量有機疊氮化合物如1-叠氮金剛烷及叠氮三甲基矽烷反應則脫去氮氣,得到[μ-RN]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = 1-Ad (10),TMS (11)),為氮原子架橋在鉬金屬間的亞胺基雙鉬三鍵錯合物。
將錯合物1與一當量烷基腈分子如丙腈及異丁腈反應,可得腈基配位在雙鉬金屬上之雙鉬三鍵錯合物[μ-η2-(R)CN]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = Et (12),iPr (13)),形成燈籠型結構;而錯合物1會與兩當量的具有拉電子特性的4-溴苯腈反應,經由碳原子進行碳-碳鍵耦合,可得雙鉬三鍵錯合物[μ-η2-NC(4-BrC6H4)C(4-BrC6H4)N]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (14),但錯合物14上的碳-氮鍵與金屬鉬-鉬鍵整體不共平面,並無芳香性,此例子有別以往雙鉬五重鍵之[2+2+2]環加成反應。此外錯合物1與一當量苯乙炔反應,會形成燈籠型雙鉬三鍵錯合物(μ-η1:η1-C6H5CCH)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (15)。
最後,試圖降低配基的立體阻礙,以增加其反應性,改用PhB[NLi(2,6-Et2C6H3)]2雙牙雙胺配基合成出的雙鉬金屬三重鍵syn-Cl2Mo2[μ-κ2-PhB(N-2,6-Et2C6H3)2]2 (16),在進一步地利用鉀石墨(KC8)還原,可得到兩個雙鉬金屬四重鍵中間配位了氘代苯的錯合物{Mo2[μ-κ2-PhB(N-2,6-Et2C6H3)2]2}2(C6D6) (17),而中間的氘代苯因受到雙鉬金屬四重鍵的擠壓而形成椅型結構,也因此氘代苯不易脫離,迫使錯合物17反應性不如錯合物1。
Abstract
The low-valent and low-coordinate quadruply-bonded dimolybdenum complex, Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2(C7H8) (1), shows interesting reactivities toward organozinc, main group reagents and small molecules.
Treatment of 1 with one equiv of organozinc reagents, such as diphenylzinc, dimethylzinc, and diethylzinc, leads to the formation of dimolybdenum complex, cis-(R-Mo)2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = Ph (2), Me (3), Et (4)), which are formed via an oxidative addition of one molecular organozinc reagents to 1, and then release one zinc atom.
Treatment of 1 with S8 gives two products. One is sulfide complex (μ-S)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (5) and the other is persulfide complex (μ-κ2-S2)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (6). Subsequent introduction of KC8 to the product mixture results in the isolation of the supersulfido complex (κ2-S2Mo)2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (7). Moreover, complex 5 can be isolated from complex 7 by adding three equivs of triphenylphosphine. However, treatment of 1 with Se or Te only leads to (μ-E)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (E = Se (8), Te (9)). Besides, complex 9 is unstable in organic solvents and it slowly decomplses back to complex 1.
Furthermore, the reaction of 1 with one equiv of organic azides, such as 1-adamantyl azide and trimethylsilyl azide, extrudes one equiv of dinitrogen molecule and gives a dimolybdenum imido complex, [μ-RN]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = 1-Ad (10), TMS (11)).
Reaction of 1 with one equiv of alkyl nitriles, such as propionitrile and isobutyronitrile, respectively, affords [μ-η2-(R)CN]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (R = Et (12), iPr (13)).
However, treatment of 1 with two equivs of 4-bromobenzonitrile gives a [2+2+2] cycloaddition dimolybdenum adduct, [μ-η2-NC(4-BrC6H4)C(4-BrC6H4)N]Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (14), which is formed via a C-C coupling. In contrast to the [2+2+2] dimolybdenum adducts formed from Mo-Mo quintuple bonded complexes, the central C2N2Mo2 six-membered ring of complex 14 is not planar, so it does not have aromatic property.
Treatment of 1 with one equiv of phenylacetylene leads to characterization of the [2+2] dimolybdenum cycloadduct, (μ-η1:η1-C6H5CCH)Mo2[μ-κ2-PhB(N-2,6-iPr2C6H3)2]2 (15),
Finally, the dimolybdenum complex syn-Cl2Mo2[μ-κ2-PhB(N-2,6-Et2C6H3)2]2 (16) stabilized by the less bulky ligand PhB[N-2,6-Et2C6H3]2 can be prepared. However, subsequent KC8 reduction leads to the characterization of an arene-bridged tetranuclear complex {Mo2[μ-κ2-PhB(N-2,6-Et2C6H3)2]2}2(C6D6) (17), in which two dimolybdenum units are bridged by a benzene-d6.
The bridged benzene-d6 in 7 is not planar but reather reduced to adopt a chair form and it is not labile. As a result, complex 17 is much less reactive than complex 1.
參考文獻
1. Alvarez, S., Coord. Chem. Rev. 1999, 193-195, 13.
2. Cummins, C. C., Prog. Inorg. Chem. 1998, 47, 685.
3. Laplaza, C. E.; Cummins, C. C., Science 1995, 268, 861.
4. Johnson, A. R.; Davis, W. M.; Cummins, C. C.; Serron, S.; Nolan, S. P.; Musaev, D. G.; Morokuma, K., J. Am. Chem. Soc. 1998, 120, 2071.
5. Laplaza, C. E.; Odom, A. L.; Davis, W. M.; Cummins, C. C.; Protasiewicz, J. D., J. Am. Chem. Soc. 1995, 117, 4999.
6. Laplaza, C. E.; Davis, W. M.; Cummins, C. C., Angew. Chem. Int. Ed. 1995, 34, 2042.
7. Curley, J. J.; Piro, N. A.; Cummins, C. C., Inorg. Chem. 2009, 48, 9599.
8. Tsai, Y. C.; Wang, P. Y.; Chen, S. A.; Chen, J. M., J. Am. Chem. Soc. 2007, 129, 8066.
9. Tsai, Y. C.; Wang, P. Y.; Lin, K. M.; Chen, S. A.; Chen, J. M., Chem. Commun. 2008, 205.
10. Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S., Science 1964, 145, 1305.
11. Cotton, F. A.; Lippard, S. J., J. Am. Chem. Soc. 1964, 86, 4497.
12. Cotton, F. A.; Murillo, L. A.; Walton, R. A., Multiple Bonds Between Metal Atoms, 3rd ed., Springer, Berlin, 2005.
13. Lawton, D.; Mason, R., J. Am. Chem. Soc. 1965, 87, 921.
14. Huq, F.; Mowat, W.; Shortland, A.; Skapski, A. C.; Wilkinson, G., Chem. Commun. 1971, 1079.
15. Strutz, H.; Schrock, R. R., Organometallics 1984, 3, 1600.
16. Chacon, S. T.; Chisholm, M. H.; Eisenstein, O.; Huffman, J. C. J. Am. Chem. Soc. 1992, 114, 8497.
17. Chisholm, M. H.; Huffman, J. C.; Hampden-Smith, M. J., J. Am. Chem. Soc. 1989, 111, 8497.
18. Chisholm, M. H.; Folting, K.; Glasgow, K. C.; Lucas, E.; Streib, W. E., Organometallics 2000, 19, 884.
19. Chisholm, M. H.; Huffman, J. C.; Lucas, E. A.; Sousa, A.; Streib, W. E., J. Am. Chem. Soc. 1992, 114, 2710.
20. Yamashita, Y.; Salter, M. M.; Aoyama, K.; Kobayashi, S., Angew. Chem. Int. Ed. 2006, 45, 3816.
21. Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P., Science 2005, 310, 844.
22. Ni, C.; Ellis, B. D.; Long, G. J.; Power, P. P., Chem. Commun. 2009, 2332.
23. Noor, A.; Glatz, G.; Müller, R.; Kaupp, M.; Demeshko, S.; Kempe, R., Nat Chem 2009, 1, 322.
24. Hsu, C. W.; Yu, J. S.; Yen, C. H.; Lee, G. H.; Wang, Y.; Tsai, Y. C., Angew. Chem. Int. Ed. 2008, 47, 9933.
25. 顏君旭, 國立清華大學化學研究所碩士論文. 2009.
26. Tsai, Y. C.; Chen, H. Z.; Chang, C. C.; Yu, J. S. K.; Lee, G. H.; Wang, Y.; Kou, T. S., J. Am. Chem. Soc.2009, 131,12534.
27. 劉士誠, 國立清華大學化學研究所碩士論文. 2010.
28. 陳思妏, 國立清華大學化學研究所碩士論文. 2011.
29. 林揚閔, 國立清華大學化學研究所博士論文. 2006.
30. Chen, H. Z.; Liu, S. C.; Yen, C. H.; Yu, J. S. K.; Shieh, Y. J.; Kou, T. S.; Tsai, Y. C., Angew. Chem. Int. Ed. 2012, 51, 10342.
31. Knochel, P.; Singer, R. D., Chem. Rev. 1993, 93, 2117.
32. Rao, S. A.; Knochel, P., J. Am.Chem. Soc. 1991, 113, 5735.
33. Soai, K.; Niwa, S., Chem. Rev. 1992, 92, 833.
34. Nakamura, M.; Hirai, A.; Nakamura, E., J. Am.Chem. Soc. 2000, 122, 978.
35. Alexakis, A.; Backvall, J. E.; Krause, N.; Pamies, O.; Dieguez, M., Chem. Rev. 2008, 108, 2796.
36. Gourdet, B.; Rudkin, M. E.; Watts, C. A.; Lam, H. W., J. Org. Chem. 2009, 74, 7849.
37. Tarwade, V.; Liu, X.; Yan, N.; Fox, J. M., J. Am.Chem. Soc. 2009, 131, 5382.
38. Yoshida, Y.; Murakami, K.; Yorimitsu, H.; Oshima, K. J. Am.Chem. Soc. 2010, 132, 8878.
39. Melzig, L.; Metzger, A.; Knochel, P., Chemistry 2011, 17, 2948.
40. Studemann, T.; Ibrahim-Ouali, M.; Knochel, P., Tetrahedron 1998, 54, 1299.
41. Bollermann, T.; Gemel, C.; Fischer, R. A., Coord. Chem. Rev. 2012, 256, 537.
42. Crotty, D. E.; Anderson, T. J.; Glick, M. D.; Oliver, J. P., Inorg. Chem. 1977, 16, 2346.
43. Budzelaar, P. H. M.; Boersma, J.; Kerk, G. J. M. V. D.; Spek, A. L.; Duisenberg, A. J. M., Inorg. Chem. 1982, 21, 3777.
44. Fryzuk, M. D.; McConville, D. H.; Rettig, S. J., Organometallics 1993, 12, 2152.
45. 李威廷, 國立清華大學化學研究所碩士論文. 2012.
46. Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Schooler, P., J. Am. Chem. Soc., Dalton Trans. 2000, 2001.
47. Amarasekera, J.; Rauchfuss, T. B.; Rheingold, A. L., Inorg. Chem. 1987, 26, 2017.
48. Bolinger, C. M.; Rauchfuss, T. B.; Wilson, S. R., J. Am. Chem. Soc. 1981, 103, 5620.
49. Brunner, H.; Janietz, N.; Wachter, J.; Nuber, B.; Ziegler, M. L., J. Org. Chem. 1988, 356, 85.
50. Giolando, D. M.; Rauchfuss, T. B.; Rheingold, A. L.; Wilson, S. R., Organometallics 1987, 6, 667.
51. Müller, A.; Römer, M.; Bögge, H.; Krickemeyer, E.; Schmitz, K., Inorg. Chem. 1984, 85, L39.
52. Matsumura, Y.; Fujiwara, J.; Maruoka, K.; Yamamoto, H., J. Am. Chem. Soc. 1983, 105, 6312.
53. Pleus, R. J.; Saak, W.; Pohl, S. Z., Anorg. Allg. Chem. 2001, 627, 250.
54. Rauchfuss, T. B.; Rodgers, D. P. S.; Wilson, S. R., J. Am. Chem. Soc. 1986, 108, 3114.
55. Henderson, R. A.; Leigh, J. G.; Pickett, C. J. , Adv. Inorg. Chem. Radiochem. 1983, 27, 197.
56. Holm, R. H., Chem. Soc. Rev. 1981, 10, 455.
57. 陳宏章, 國立清華大學化學研究所博士論文. 2011.
58. Mak, Thomas C. M.; Goh, L. Y., J. Am. Chem. Soc. 1986, 19, 1474.
59. Tamne, E.S.; Noor, A.; Qayyum, S.; Bauer, T.; Kempe, R., Inorg. Chem. 2013, 52, 329-336.
60. Shen, J.; Yap, G. P.; Theopold, K.H., Chem. Commun. 2014, 50, 2579.
61. Bar-Nahum, I.; York, J. T.; Young, V. G.; Tolman, W. B., Angew. Chem. Int. Ed. 2008, 47, 533.
62. DuBois, M. R., Chem. Rev. 1989, 89, 1.
63. Yao, S.; Milsmann, C.; Bill, E.; Wieghardt, K.; Driess, M., J. Am. Chem. Soc. 2008, 130, 13536.
64. Elder, R. C.; Trkula, M., Inorg. Chem. 1977, 16, 1048.
65. Khan, M. M. T.; Siddiqui, M. R. H., Inorg. Chem. 1991, 30, 1157.
66. Kieber-Emmons, M. T.; Riordan, C. G., Acc. Chem. Res. 2007, 40, 618.
67. Shearer, J.; Zhao, N., Inorg. Chem. 2006, 45, 9637.
68. Sugimoto, H.; Tatemoto, S. ; Toyota, K.; Ashikari, K.; Kubo, M.; Ogura, T.; Itoh, S., Chem. Commun. 2013, 49, 4358.
69. Hayton, T. W.; Wu, G.; Smiles, D. E., Inorg. Chem. 2014, 53, 12683.
70. Stephan, D. W.; Longobardi, L. E.; Wolter, V., Angew. Chem. Int. Ed. 2015, 54, 809.
71. Cenini, S., Coord. Chem. Rev. 2006, 250, 1234-1253.
72. Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V., Angew. Chem. Int. Ed. 2005, 44, 5188.
73. Curtis, M. D.; D’Errico, J. J.; Bulter, W. M. Organometallics 1987, 6, 2151-2157.
74. Curtis, M. D.; Messerle, L.; D’Errico, J. J.; Solis, H. E.; Barcelo, I. D.; Bulter, W. M., J. Am. Chem. Soc. 1987, 109, 3603.
75. Curtis, M. D.; Messerle, L,; D’Errico, J. J.; Bulter, W. M.; Hay, M. S., Organometallics 1986, 5, 2283.
76. Cenini, S.; Gallo, E.; Caselli, A.; Ragaini, F.; Fantauzzi, S.; Piangiolino, C., Coord. Chem. Rev. 2006, 250, 1234.
77. Bottomley, L. A.; Neely, F. L., J. Am. Chem. Soc. 1989, 111, 5955.
78. Bottomley, L. A.; Neely, F. L., Inorg. Chem. 1997, 36, 5435.
79. Neely, F. L.; Bottomley, L. A., Inorg. Chem. 1997, 36, 5432.
80. Woo, L. K.; Czapla, D. J.; Goll, J. G., Inorg. Chem. 1990, 29, 3915.
81. Woo, L. K.; Goll, J. G., J. Am. Chem. Soc. 1989, 111, 3755.
82. Woo, L. K.; Goll, J. G.; Czapla, D. J.; Hays, J. A., J. Am. Chem. Soc. 1991, 113, 8478.
83. Clough, C. R.; Greco, J. B.; Figueroa, J. S.; Diaconescu, P. L.; Davis, W. M.; Cummins, C. C., J. Am. Chem. Soc. 2004, 126, 7742.
84. Curley, J. J.; Sceats, E. L.; Cummins, C. C., J. Am. Chem. Soc. 2006, 128, 14036.
85. Figueroa, J. S.; Piro, N. A.; Clough, C. R.; Cummins, C. C., J. Am. Chem. Soc. 2005, 128, 940.
86. Silvia, J. S.; Cummins, C. C., J. Am. Chem. Soc. 2008, 131, 446.
87. Silvia, J. S.; Cummins, C. C., J. Am. Chem. Soc. 2010, 132, 2169.
88. Schrock, R. R., Chem. Rev. 2009, 109, 3211.
89. Schrock, R. R.; Hoveyda, A. H., Angew. Chem. Int. Ed. 2003, 42, 4592.
90. Cantrell, G. K.; Meyer, T. Y., Organometallics 1997, 16, 5381.
91. Cantrell, G. K.; Meyer, T. Y., Chem. Commun. 1997, 1551.
92. de Bellefon, C.; Fouilloux, P., Catalysis Reviews: Science and Engineering 1994, 36, 459.
93. Michelin, R. A.; Mozzon, M.; Bertani, R., Coord. Chem. Rev. 1996, 147, 299.
94. Feng, Q.; Ferrer, M.; Green, M. L. H.; Mountford, P.; Mtetwa, V. S. B., J. Am. Chem. Soc., Dalton Trans. 1992, 1205.
95. Garcia Alonso, F. J.; Garcia Sanz, M.; Riera, V.; Anillo Abril, A.; Tiripicchio, A.; Ugozzoli, F., Organometallics 1992, 11, 801.
96. Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X., Polyhedron 1998, 17, 2781.
97. Cotton, F. A.; Kühn, F. E., J. Am. Chem. Soc. 1996, 118, 5826.
98. Kawashima, T.; Takao, T.; Suzuki, H., Angew. Chem. Int. Ed. 2006, 45, 485.
99. Kukushkin, V. Y.; Pombeiro, A. J. L., Chem. Rev. 2002, 102, 1771-1802.
100. Suzuki, H.; Kawashima, T.; Takao, T., Angew. Chem. Int. Ed. 2006, 118, 499-502.
101. Nicholls, D.; Ryan, T. A., Inorg. Chim. Acta 1980, 41, 233-237.
102. Zhang, S.; Zhang, W. X.; Zhao, J.; Xi, Z., J. Am. Chem. Soc. 2010, 132, 14042-14045.
103. Cummins, C. C.; Peters, J. C.; Baraldo, L. M.; Baker, T. A.; Johnson, A. R., J. Organomet. Chem. 1999, 591, 24-35.
104. Cummins, C. C.; Christian, G.; Stranger, R.; Yatesb, B. F., Dalton Trans. 2008, 338-344.
105. Li, B.; Xu, S.; Song, H.; Wang, B., J. Org. Chem. 2008, 693, 87.
106. Chivers, T.; Fedorchuk, C.; Parvez, M., Organometallics 2004, 43, 2643-2653.
107. Heppekausen, J.; Stade, R.; Goddard, R.; Fürstner, A., J. Am. Chem. Soc. 2010, 132, 11045.
108. Reppe, W.; Schlichting, O.; Klager, K.; Toepel, T., Liebigs Ann. Chem. 1948, 560, 1.
109. Grotjahn, D. B., In Comprehensive Organometallic Chemistry II; Pergamon: Oxford, U.K., 741
110. Yeh, W. Y.; Ho, C. L.; Chiang, M. Y.; Chen, I. T., Organometallics 1997, 16, 2698.
111. Baxter, R. J.; Knox, G. R.; Moir, J. H.; Pauson, P. L.; Spicer, M. D., Organometallics 1998, 18, 206.
112. Hoffman, D. M.; Hoffmann, R.; Fisel, C. R., J. Am. Chem. Soc. 1982, 104, 3858.
113. Chisholm, M. H.; Click, D. R.; Gallucci, J. C.; Hadad, C. M.; Wilson, P. J., J. Am. Chem. Soc. 2002, 124, 14518.
114. Chisholm, M. H.; Lynn, M. A., J. Org. Chem. 1998, 550, 141.
115. Cotton, F. A.; Feng, X., Inorg. Chem. 1990, 29, 3187.
116. Spaltenstein, E.; Mayer, J. M. J. Am. Chem. Soc. 1991, 113,7744.
117. Schollhammer, P.; Cabon, N.; Capon, J. F.; Pétillon, F. Y.; Talarmin, J.; Muir, K. W., Organometallics 2001, 20, 1230.
118. Chivers, T.; Fedorchuk, C.; Parvez, M., Inorg. Chem. 2004, 43, 2643.