簡易檢索 / 詳目顯示

研究生: 許家彰
Hsu, Chia-Chang
論文名稱: 以奈米級碳材料作為染料敏化太陽能電池對電極之研究
Investigations on the Application of Nanoscale Carbon Materials as Counter Electrodes of the Dye-Sensitized Solar Cells
指導教授: 戴念華
Tai, Hyan-Hwa
李紫原
Lee, Chi-Young
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 124
中文關鍵詞: 染料敏化太陽能電池對電極碳材料催化
外文關鍵詞: dye-sensitized solar cells, counter electrodes, carbon materials, catalysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用奈米級碳材料作為染料敏化太陽能電池之對電極,藉由交流阻抗、循環伏安法、穩態伏安法與光電轉換特性等方法,研究各式碳極對碘離子/三碘錯離子氧化還原對之還原能力。實驗結果發現,碳極的表面積會強烈影響介面電荷轉移阻抗、I3-離子還原效率與光電轉換效率。由電子轉移控制與質傳控制之互動關係得知,奈米碳粉電極具有催化電解液能力,而多壁奈米碳管電極和少壁奈米碳管電極僅為輔助催化電解液,藉由分析奈米碳粉/少壁奈米碳管複合電極特性得知,奈米碳粉電極催化電解液能力不及鉑金屬。
    本研究使用熱沉積鉑金屬為對電極,所得的光電轉換效率為4.136 %,以少壁奈米碳管電極作為對電極其光電轉換效率為3.156 %。由此結果可推論,奈米碳材料有機會取代鉑金屬作為染料敏化太陽能之對電極。使用鉑/少壁奈米碳管復合電極,以鉑金屬顆粒作為催化活躍位置,藉由少壁奈米碳管的高表面積,提升光電轉換效率。
    最後,本研究提出一套完整的對電極分析方法與流程,並且探討碳材料的結構、表面形貌、表面積與缺陷等因素對電極的導電性、催化活性與穩定性的關係,並提出碳材料應用於染料敏化太陽能電池對電極的準則。


    We utilize nanoscale carbon materials as the counter electrodes of dye-sensitized solar cells (DSSCs) to explore how the catalytic ability of carbon electrodes responds to iodium/triiodide redox. We find that the surface area of carbon electrodes has markedly influences on the charge transfer resistance, the efficiency of catalytic process of I3- ions, and the energy conversion efficiency. Through the relationship between charge transfer and mass transfer control, nanocarbon electrodes possess the ability to catalyze electrolyte; on the other hand, both MWNTs and LWNTs only play the role of assistance. Moreover, according to the experimental result, the catalytic ability of nanocarbon electrodes is inferior to the Pt electrode.
    The energy conversion efficiency of thermal deposited Pt and LWNTs counter electrodes are 4.136 % and 3.156 %, respectively, which indicates that LWNTs has the potential to substitute Pt as counter electrodes of DSSCs. This energy conversion efficiency of the Pt/LWNTs electrode can be enhanced due to increasing surface areas of LWNTs and employing Pt particles as the active sites of catalysis.
    This work proposes a thorough method to analyze counter electrode and shows how the parameters such as structure, morphology, surface areas, and defects of materials, affect the electric conductivity, catalytic activity, and stability of the electrode. Furthermore, this study also establishes a criterion for the application of carbon materials as counter electrode in DSSCs.

    總目錄 摘要………………………………………………………………………I Abstract…………………………………………………………………II 致謝……………………………………………………………………III 總目錄 …………………………………………………………………IV 圖目錄…………………………………………………………………VIII 表目錄 ………………………………………………………………XIII 第一章 緒論……………………………………………………………1 1.1 前言………………………………………………………………1 1.2 太陽能電池簡介…………………………………………………2 1.3 染料敏化太陽能電池(Dye-Sensitized Solar Cells, DSSC)………4 1.4 研究動機…………………………………………………………5 第二章 文獻回顧與理論基礎……………………………………………7 2.1染料敏化太陽能電池工作原理…………………………………7 2.2染料敏化電池各層組成探討……………………………………8 2.2.1 二氧化鈦陽極電極…………………………………………8 2.2.2表面修飾染劑……………………………………………10 2.2.3 電解質溶液………………………………………………11  2.2.4 相對電極(陰極)………………………………………13 2.3 太陽能電流電壓輸出特性………………………………………15 2.4 交流阻抗原理與模擬等效電路…………………………………16 2.4.1交流阻抗原理………………………………………………16 2.4.2太陽能電池之模擬等效電路………………………………19 2.5 電極反應動力學理論…………………………………………21 2.5.1極化………………………………………………………21 2.5.2電極反應動力學…………………………………………22 2.6 奈米碳管的起源、結構與製備………………………………23 2.6.1奈米碳管的起源…………………………………………23 2.6.2奈米碳管的結構…………………………………………23 2.6.3水平流動觸媒化學沉積法製備奈米碳管………………24 第三章 研究方法與實驗步驟……………………………………………34 3.1實驗藥品與實驗儀器…………………………………………34 3.2 實驗步驟……………………………………………………37 3.2.1碳管材料製備………………………………………………37 3.2.1.1水平式懸浮觸媒化學氣相沉積法…………………37 3.2.1.2多壁奈米碳管實驗成長步驟………………………38 3.2.1.3多壁奈米碳管粉末之純化…………………………39 3.2.2電極製作…………………………………………………40 3.2.3電池組裝…………………………………………………42 3.3 量測儀器使用方式………………………………………………43 3.3.1光電轉換特性量測…………………………………………43 3.3.2全電池光源下電化學阻抗光譜分析………………………43 3.3.3碳極電荷轉移阻抗分析……………………………………44 3.3.4循環伏安法(Cyclic Voltammetry)…………………………44 3.3.5穩態伏安法(Steady-State Voltammetry)……………………45 第四章 結果與討論………………………………………………………50 4.1 製程之優化………………………………………………………50 4.1.1導電玻璃穿透度與電阻之影響……………………………50 4.1.2鉑金屬對電極製程方法之影響……………………………51 4.1.3電解液溶劑之影響…………………………………………53 4.1.4電解質DMPII添加對染料敏化太陽能電池之影響……54 4.2各式碳極(nano carbon, MWNTs, LWNTs)特性之比較…………56 4.2.1各式碳極之BET、BJH與SEM表面形貌分析…………56 4.2.2各式碳極之電性分析……………………………………57 4.2.3各式碳極之光電轉換效率與全電池EIS分析…………58 4.2.4各式碳極之電荷轉移阻抗分析……………………………60 4.2.5各式碳極之循環伏安法(Cyclic Voltammetry, CV)分析…62 4.2.6各式碳極之穩態伏安法(Steady-State Voltammetry)分析…64 4.2.7各式碳極材料粉末結構……………………………………66 4.3 Pt/LWNTs電極作為DSSC對電極之影響………………………69 4.3.1 Pt/LWNTs電極之製程改變與SEM表面形貌……………69 4.3.2 Pt/LWNTs電極光電轉換效率與全電池EIS分析………69 4.4 nano carbon/LWNTs電極作為DSSC對電極之影響……………72 4.4.1 nano carbon/LWNTs電極之製程改變與SEM表面形貌…72 4.4.2 nano carbon/LWNTs電極光電轉換效率與全電池EIS分析73 4.4.3 碳材料作為染料敏化太陽能電池對電極之準則…………74 第五章 結論與建議……………………………………………………105 5.1 結論……………………………………………………………105 5.2 建議……………………………………………………………107 參考文獻…………………………………………………………………109 附錄A……………………………………………………………………118 圖目錄 圖1-1 現今能源使用比例…………………………………………………6 圖2-1 染料敏化電池理論工作原理圖…………………………………26 圖2-2 染料敏化電池實際工作原理圖…………………………………26 圖2-3 染料敏化太陽能電池結構圖……………………………………27 圖2-4 染劑對TiO2及電解液能階示意圖………………………………27 圖2-5 (a)N719染劑分子結構;(b)N719染劑分子吸收光譜圖…………28 圖2-6 染料透過carboxyl groups與TiO2表面形成ester linkages………28 圖 2-7 Nyquist plots對應等效電路電阻電容……………………………29 圖2-8 等效電路模擬圖…………………………………………………29 圖2-9 簡化等效電路模擬圖……………………………………………29 圖2-10 典型塔弗極化曲線圖…………………………………………30 圖2-11 電子轉移控制與質傳控制之互動關係圖……………………30 圖 2-12 S. Iijima首次發表之多壁奈米碳管HRTEM照片…………31 圖2-13 以三層不同Chirality的石墨層捲區構成之多壁奈米碳管示意 圖……………………………………………………31 圖2-14 奈米碳管結構向量示意圖……………………………………32 圖2-15 單壁奈米碳管的三種結構示意圖:(a)arm-chair、(b)zigzag與(c)chiral……………………………………………………32 圖2-16懸浮觸媒法裝置示意圖…………………………………………33 圖2-17本實驗室所合成單壁奈米碳管之TEM圖:(a)低倍率;(b)高倍率…………………………………………………………33 圖3-1水平式懸浮觸媒CVD裝置圖…………………………………46 圖3-2產物沉積示意圖…………………………………………………46 圖3-3 (a)絨球狀多壁奈米碳管外觀;(b)多壁奈米碳管之SEM圖…47 圖3-4 DSSC二氧化鈦薄膜之SEM圖………………………………47 圖3-5 染料敏化太陽能電池概要式製作流程圖………………………48 圖3-6 碳極交流阻抗分析測試電池結構圖……………………………49 圖3-7 DSSC對電極量測分析流程圖…………………………………49 圖 4-1片電阻8 □/sq與片電阻15 □/sq導電玻璃之比較:(a)光電轉換效率;(b)全電池照光下EIS分析…………………………………84 圖 4-2 兩不同製程方法鍍鉑金屬於導電玻璃之SEM圖:(a) 濺鍍法 (sputtering);(b)熱沉積法(thermal decomposition)……85 圖 4-3 兩不同製程方法鍍鉑金屬於導電玻璃:(a)全電池照光下Nyquist plots;(b)光電轉換效率特性圖…………………………86 圖4-4 相同電池條件下,不同電解液溶劑(ACN or MPN)之比較:(a)光電轉換效率特性圖;(b)全電池照光下Nyquist plots……………87 圖4-5 相同電池條件FTO-TiO2-N719∣0.6 M DMPII or not 0.50 M LiI, 0.05 M I2, 0.5 M TBP in ACN-based electrolyte∣Pt-FTO:(a)光電轉換效率特性圖;(b)全電池照光下Nyquist plots………88 圖4-6 各式碳材所製成的對電極不同倍率SEM表面形貌:(a), (b)nano carbon;(c), (d)MWNTs;(e), (f)LWNTs……………………89 圖4-7 各式對電極之光電轉換特性表現 ……………………………90 圖4-8 再結合損失之飽和再結合電流密度影響填充因子示意圖…90 圖4-9 各式電極於照光下開路電壓條件EIS分析:(a), (b)Nyquist plots;(c), (d)Bode plots………………………………………91 圖4-10 交流阻抗分析對應等效電路圖………………………………91 圖4-11 各式碳極電荷轉移阻抗EIS分析:(a)nano carbon;(b)MWNTs;(c)LWNTs…………………………………………………92 圖4-12 Thermal Pt電極對於電解液([I-]/[ I3-] = 9/1)之循環伏安圖……93圖4-13多次掃描過後,Pt材料在2I3-→3I2 +2e-反應活性 ……………93 圖4-14各式碳極對於電解液([I-]/[ I3-] = 9/1)之循環伏安法圖 ………94 圖4-15 I3-+2e-=3I-反應峰電流值與掃描速率根號關係………94 圖4-16各式對電極對於電解液([I-]/[ I3-] = 9/1)之穩態伏安法圖…95 圖4-17 各式對電極之塔弗曲線圖……………………………………95 圖4-18 膜厚6.05 □m的nano carbon與膜厚為13 □m的MWNTs兩碳 極穩態伏安圖…………………………………………………96 圖4-19 碳材粉末之TEM分析;(a), (b)多壁奈米碳管(MWNTs):(c)少壁奈米碳管(LWNTs):(d), (e)奈米碳粉末(nano carbon)…………97 圖4-20 碳材粉末拉曼光譜(Raman spectrum);(a) 多壁奈米碳管 (MWNTs);(b)少壁奈米碳管(LWNTs);(c)奈米碳粉…………98 圖4-21 Pt/LWNTs電極之SEM表面形貌:(a)50,000X;(b)20,000X; (c)側視圖3,500X;(d)側視圖2,000X………………………99 圖4-22 Pt/LWNTs電極並比較thermal Pt、sputtering Pt、LWNTs電極之 光電轉換特性圖…………………………………………………100 圖4-23 Pt/LWNTs電極並比較thermal Pt、sputtering Pt、LWNTs電極之全電池照光下EIS分析 …………………………………………86 圖4-24 Pt/LWNTs與thermal Pt使用DMPII電解液之光電轉換表現與全 電池照光下EIS分析表現………………………………………101 圖4-25 不同倍率下nano carbon/LWNTs電極之SEM表面形貌: (a) 50,000X;(b)20,000X………………………………………102 圖4-26 相同條件下,nano carbon/LWNTs電極與LWNTs電極:(a)光電 轉換特性圖;(b)全電池照光下EIS分析 ……………………103 圖4-27 碳材料在染料敏化太陽能電池中對電極要求準則…………104 圖A-1 ED-Pt/LWNTs電極之SEM表面形貌:(a) 50,000X;(b) 20,000X;(c)側視圖3,000X…………………………………………121 圖A-2 不同倍率下ED-Pt鍍於FTO基板之SEM表面形貌:(a) 50,000X;(b) 20,000X ……………………………………………122 圖A-3 (a), (b)EDS分析ED-Pt/LWNTs電極之實驗結果……………123 圖A-4 ED-Pt/LWNTs電極之光電轉換特性表現比較結果……………124 表目錄 表4-1片電阻8 □/sq與片電阻15 □/sq導電玻璃之光電轉換表現與 全電池EIS分析表現……………………………………………77 表4-2 熱沉積Pt與濺鍍Pt之光電轉換表現與全電池照光下EIS分析 表現…………………………………………………………………77 表4-3 ACN-based電解液與MPN-based電解液之光電轉換表現與照光 下EIS分析表現……………………………………………………77 表4-4 添加DMPII電解質於ACN-based電解液之光電轉換特性 表現…………………………………………………………………78 表4-5 添加DMPII電解質於ACN-based電解液之照光下全電池EIS 分析…………………………………………………………………78 表4-6 碳極材料粉末BET、BJH實驗結果………………………………79 表4-7 各式碳極的單位面積厚度之薄膜重量與單位厚度反應面積…79 表4-8 各式碳電極的片電阻(sheet resistance)與電阻率(Resistivity)……80 表4-9 各式碳極光電轉換表現實驗結果………………………………80 表4-10 各式碳極電荷轉移阻抗分析結果………………………………81 表4-11 各式對電極循環伏安法實驗結果………………………………82 表4-12 Pt/LWNTs相較於thermal Pt、sputtering Pt與LWNTs之光電轉 換表現……………………………………………………………82 表4-13 Pt/LWNTs與thermal Pt使用DMPII電解液之光電轉換表現…83 表4-14 nano carbon/LWNTs與LWNTs之光電轉換表現 ………………83 表A-1 ED-Pt/LWNTs電極光電轉換效率之比較………………………120

    [1] R. Burrett, C. Clini et al, “Renewables 2007 Grobal status report” http://www.ren21.net, (2008)
    [2] V. Gray, et al, “Climate Change 2007: The Physical Science Basis Summary for Policymakers”, IPCC 4th Assessment Report (2007)
    [3] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. App. Phy., 25, 676-677 (1954)
    [4] B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 737-740 (1991)
    [5] C. J. Barbė, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications”, J. Am. Ceram. Soc., 80, 3157-3171 (1997)
    [6] K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin Dyes”, Sol. Energy Mater. Sol. Cells, 77, 89-103 (2003)
    [7] T. Horiuchi, H. Miura, S. Uchida, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells”, J. Photochem. Photobiol. A, 164, 29-32 (2004)
    [8] N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, M. Grätzel, “The performance and stability of ambient temperature molten salts for solar cell applications”, J. Electrochem. Soc., 143, 3099 (1996)
    [9] B. O’Regan, D. T. Schwartz, “Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL’NCS/CuSCN: initiation and potential mechanisms”, Chem. Mater., 10, 1501-1059 (1998)
    [10] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies”, Nature, 395, 583-585 (1998)
    [11] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”, Nature materials, 2, 402-407 (2003)
    [12] N. J. Cherepy, G. P. Smestad, M. Grätzel, J. Z. Zhang, “Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode”, J. Phys. Chem. B, 101, 9342 (1997)
    [13] A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 44, 99-117 (1996)
    [14] C. Longo, A. F. Nogueira, M.-A. D. Paoli, “Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy”, J. Phys. Chem. B., 106, 5925-5930 (2002)
    [15] K. Okada, H. Matsui, T. Kawashima, T. Ezure, N. Tanabe,
    “100 mm x 100 mm lager-sized dye sensitized solar cells”,
    J. Photochem. Photobiol. A, 164, 193-198 (2004)
    [16] B. K. Koo, D. Y. Lee, H. J. Kim, W. J. Lee, J. S. Song, H. J. Kim, “Seasoning effect of dye-sensitized solar cells with different counter electrodes” J. Electroceram. 17, 79-82 (2006)
    [17] T. N. Murakami, M. Grätzel, “Counter electrodes for DSC- application of functional materials as catalysts”, Inorg. Chim. Acta, 316, 572-580 (2008)
    [18] M. Grätzel, “Photoelectrochemical cells”, Nature, 414, 338-344 (2001)
    [19] X. T. Zhang, H. W. Liu, T. Taguchi, Q. B. Meng, O. Sato, A. Fujishima, “Show interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO¬2 films”, Sol. Energy Mater. Sol. Cells, 81, 197-203 (2004)
    [20] G.P. Smestad, M. Grätzel﹐” Demonstrating electron transfer and nanotechnology: A natural dye-sensitized nanocrystalline energy converter”, J. Chem. Educ. 75, 752–756 (1998)
    [21] Y. Saito, S. Kambe, T. Kitamura, Y. Wada, S. Yanagida, " Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells”, Sol. Energy Mater. Sol. Cells, 83, 1-13 (2004)
    [22] J. H. Yoon, S.R. Jang, R. Vittal, J. Lee, K.J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-seneitized solar cells”, J. Photochem. Photobiol. A, 180, 184-188 (2006)
    [23] S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency”, Adv. Mater., 20, 54-58 (2008)
    [24] K. M. Lee, V. Suryanarayanan, K. C. Ho, “A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells”, Sol. Energy Mater. Sol. Cells, 91, 1416-1420 (2007)
    [25] P. J. Cameron, L. M. Peter, “Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells”, J. Phys. Chem. B, 107, 14394-14400 (2003)
    [26] A. Burke, S. Ito, H. Bach, J. Kwiatkowski, M. Grätzel, “The function of a TiO2 compact layer in dye sensitized solar cells incorporating planar organic dyes”, Nano Lett., 8(4), 977-981 (2008)
    [27] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Grätzel, ” Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells”, Chem. Commun., 4351–4353 (2005)
    [28] P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Grätzel, “Enhance the performance of dye-sensitized solar cells by Co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals”, J. Phys. Chem. B, 107, 14336-14341 (2003)
    [29] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over
    10 %”, thin solid films, 516, 4613-4619 (2008)
    [30] M.Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorg. Chem., 44(20), 6842 -6851 (2005)
    [31] Md. K. Nazeeruddin, S.M. Zakeeruddin, J.J. Lagref, P. Liska, P. Comte, C. Barolo, G. Viscardi , K. Schenk , M. Grätzel, “Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell”, Coord. Chem. Rev., 248, 1317-1328 (2004)
    [32] H. Zabri, F. Odobel, S. Altobello, S. Caramori, C.A. Bignozzi, “Efficient osmium sensitizers containing 2,2’- bipyridine -4,4’- bisphosphonic acid ligand”, J. Photochem. Photobiol. A, 166, 99-106 (2004)
    [33] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B, 107, 8981-8987 (2003)
    [34] G.. J. Meyer, “Efficient light-to-electrical energy conversion: nanocrystalline TiO2 films modified with inorganic sensitizers”, J. Chem. Edu., 74(6), 652-656 (1997)
    [35] Y. Liu, A. Hagfeldt, X.R. Xiao, S.E. Lindquist, "Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell", Sol. Energy Mater. Sol. Cells, 55, 267-281 (1998)
    [36] D.F. Watson, G.J. Meyer, “Cation effects in nanocrystalline solar cells", Coord. Chem. Rev., 248, 1391-1406 (2004)
    [37] N.G. Park, S.H. Chang, J. Lagemaat, K.J. Kim, A.J. Frank, “Effect of cations on the open-circuit photovoltage and the charge-injection efficiency of dye-sensitized nanocrystalline rutile TiO2 films”, Bull. Korean Chem. Soc., 21, 985-988 (2000)
    [38] H. Kusama, H. Arakawa, “Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance”, J. Photochem. Photobiol. A, 162, 441-448 (2004)
    [39] H. Kusama, H. Arakawa, “Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance”, J. Photochem. Photobiol. A, 160, 171-179 (2003)
    [40] F. Nour-Mohammadi, H. T. Nguyen, G. Boschloo, T. Lund, “An investigation of the photosubstitution reaction between N719-dyed nanocrystalline TiO2 particles and 4-tert-butyl- pyridine” J. Photochem. Photobiol. A, 187, 348-355 (2007)
    [41] G. Boschloo, L. Haggman, A. Hagfeldt, “Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructure TiO2 solar cells”, J. Phys. Chem. B, 110, 13144-13150 (2006)
    [42] H. T. Nguyen, H. M. Ta, T. Lund, “Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine”, Sol. Energy Mater. Sol. Cells, 91, 1934-1942 (2007)
    [43] N. Papageorgiou, W. F. Maier, M. Grätzel, “An iodine/triiodide reduction electrocatalyst for aqueous and organic media”, J. Electrochem Soc., 144(3), 876-884 (1997)
    [44] G. Tsekouras, A. J. Mozer, G. G. Wallace, “Enhanced performance of dye sensitized solar cells utilizing platinum electrodeposit counter electrodes”, J. Electrochem. Soc., 155(7), K124-K128 (2008)
    [45] C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, K. J. Kim, “Enhanced performance of a dye-sensitized solar cell with an electrodeposited- platinum counter electrode”, Electrochim. Acta, 53, 2890-2896 (2008)
    [46] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, Kazuhiko Murata, “High-performance carbon counter electrode for dye-sensitized solar cells”, Sol. Energy Mater. Sol. Cells, 79, 459–469 (2003)
    [47] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q Meng, “Application of carbon materials as counter electrodes of dye-sensitized solar cells”, Electrochem. Commun., 9, 596-598 (2007)
    [48] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H. Baker, P. Comte, P. Péchy, M. Grätzel, “Highly efficient dye-sensitized solar cells based on carbon black counter electrodes”, J. Electrochem. Soc., 153(12), A2255- A2261 (2006)
    [49] A. J. Bard, L. R. Faulkner, “Electrochemical methods: fundamentals and applications-2nd ed.”, John Wiley, New York, 2001
    [50] Q. Wang, J. E. Moser, M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells”, J. Phys. Chem. B, 109, 14945-14953 (2005)
    [51] N. Koide, Y. Chiba, T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Appl. Phys. Lett., 84, 2433-2435 (2004)
    [52] V. Yong, S. T. Ho, Robert P. H. Chang, “Modeling and simulation for dye-sensitized solar cells”, Appl. Phys. Lett., 92, 143506 (2008)
    [53] N. Koide, A.Islam, Y. Chiba, L. Han, “Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit”, J. Photochem. Photobiol. A, 182, 296-305 (2006)
    [54] J.R. Macdonald, “Impedance Spectroscopy”, Wiley, New York, 1987
    [55] A. Hauch, A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cell”, Electrochim. Acta, 46, 3457-3466 (2001)
    [56] 胡啟章, “電化學原理與方法”, 五南圖書出版公司 (2002)
    [57] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991).
    [58] K. Balasubramanian, M. Burghard, “Chemically functionalized carbon nanotubes”, Small, 1, 180-192 (2005).
    [59] M. S. Dresseelhaus, G. Dresseelhaus, R. Saito, ‘‘Physics of carbon nanotubes’’, Carbon, 33, 883-891 (1995).
    [60] L. Ci, J. Wei, B. Wei, J.Liang, C. Xu, D. Wu, “Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method”, Carbon, 39, 319-335 (2001)
    [61] 林俊言, “以流動觸媒法在垂直式爐管成長單壁奈米碳管之研究”, 國立清華大學材料科學工程學系 (2006)
    [62] 曾士豪, “單壁奈米碳管量產及其光聲響性質之研究”, 國立清華大學材料科學工程學系 (2005)
    [63] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, H. Arakawa, “Highly efficient photo-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells”, Sol. Energy Mater. Sol. Cells, 64, 115-134 (2000)
    [64] P. Yao, L. Wang, E. Chiang, K. Ho, Y. Chen, “Nanocrystalline TiO2 for porphyrin-sensitized solar cells: A preliminary study”, Journal of Science and Engineering Technology, 4(1), 35-42 (2008)
    [65] B. P. Nelson, R. Candal, R. M. Corn, M. A. Anderson, “Control of surface and ζ potentials on nanoporous TiO2 by potential-determining and specifically adsorbed ions”, Langmuir, 16, 6094-6101, (2000)
    [66] W. J. Lee, E. Ramasamy, D. Y. Lee, J. S. Song, “Performance variation of carbon counter electrode based dye-sensitized solar cell”, Sol. Energy Mater. Sol. Cells, 92, 814-818 (2008)
    [67] 賴冠樺, “利用循環伏安法及交流阻抗法探討染料敏化型太陽能電池之電解液”, 國立清華大學材料科學工程學系 (2007)
    [68] K. Suzuki, M. Yamamoto, M. Kumagai, S. Yanagada, “Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells”, Chem. Lett., 32, 28-30 (2003)
    [69] J. E. Trancik, S. C. Barton, J. Hone, “Transparent and catalytic carbon nanotube films”, Nano Lett., 8(4), 982-987 (2008)
    [70] W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, “Transparent graphene /PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells”, Electrochem. Commun., 10, 1555-1558 (2008)
    [71] M. C. Wu, Y. Y. Lin, S. Chen, H. C. Liao, Y. J. Wu, C. W. Chen, “Enhancing light absorption and carrier transport of P3HT by doping mulit-wall carbon nanotubes”, Chem. Phys. Lett., 468, 64-68 (2009)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE