研究生: |
許家彰 Hsu, Chia-Chang |
---|---|
論文名稱: |
以奈米級碳材料作為染料敏化太陽能電池對電極之研究 Investigations on the Application of Nanoscale Carbon Materials as Counter Electrodes of the Dye-Sensitized Solar Cells |
指導教授: |
戴念華
Tai, Hyan-Hwa 李紫原 Lee, Chi-Young |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 染料敏化太陽能電池 、對電極 、碳材料 、催化 |
外文關鍵詞: | dye-sensitized solar cells, counter electrodes, carbon materials, catalysis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用奈米級碳材料作為染料敏化太陽能電池之對電極,藉由交流阻抗、循環伏安法、穩態伏安法與光電轉換特性等方法,研究各式碳極對碘離子/三碘錯離子氧化還原對之還原能力。實驗結果發現,碳極的表面積會強烈影響介面電荷轉移阻抗、I3-離子還原效率與光電轉換效率。由電子轉移控制與質傳控制之互動關係得知,奈米碳粉電極具有催化電解液能力,而多壁奈米碳管電極和少壁奈米碳管電極僅為輔助催化電解液,藉由分析奈米碳粉/少壁奈米碳管複合電極特性得知,奈米碳粉電極催化電解液能力不及鉑金屬。
本研究使用熱沉積鉑金屬為對電極,所得的光電轉換效率為4.136 %,以少壁奈米碳管電極作為對電極其光電轉換效率為3.156 %。由此結果可推論,奈米碳材料有機會取代鉑金屬作為染料敏化太陽能之對電極。使用鉑/少壁奈米碳管復合電極,以鉑金屬顆粒作為催化活躍位置,藉由少壁奈米碳管的高表面積,提升光電轉換效率。
最後,本研究提出一套完整的對電極分析方法與流程,並且探討碳材料的結構、表面形貌、表面積與缺陷等因素對電極的導電性、催化活性與穩定性的關係,並提出碳材料應用於染料敏化太陽能電池對電極的準則。
We utilize nanoscale carbon materials as the counter electrodes of dye-sensitized solar cells (DSSCs) to explore how the catalytic ability of carbon electrodes responds to iodium/triiodide redox. We find that the surface area of carbon electrodes has markedly influences on the charge transfer resistance, the efficiency of catalytic process of I3- ions, and the energy conversion efficiency. Through the relationship between charge transfer and mass transfer control, nanocarbon electrodes possess the ability to catalyze electrolyte; on the other hand, both MWNTs and LWNTs only play the role of assistance. Moreover, according to the experimental result, the catalytic ability of nanocarbon electrodes is inferior to the Pt electrode.
The energy conversion efficiency of thermal deposited Pt and LWNTs counter electrodes are 4.136 % and 3.156 %, respectively, which indicates that LWNTs has the potential to substitute Pt as counter electrodes of DSSCs. This energy conversion efficiency of the Pt/LWNTs electrode can be enhanced due to increasing surface areas of LWNTs and employing Pt particles as the active sites of catalysis.
This work proposes a thorough method to analyze counter electrode and shows how the parameters such as structure, morphology, surface areas, and defects of materials, affect the electric conductivity, catalytic activity, and stability of the electrode. Furthermore, this study also establishes a criterion for the application of carbon materials as counter electrode in DSSCs.
[1] R. Burrett, C. Clini et al, “Renewables 2007 Grobal status report” http://www.ren21.net, (2008)
[2] V. Gray, et al, “Climate Change 2007: The Physical Science Basis Summary for Policymakers”, IPCC 4th Assessment Report (2007)
[3] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. App. Phy., 25, 676-677 (1954)
[4] B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 737-740 (1991)
[5] C. J. Barbė, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic applications”, J. Am. Ceram. Soc., 80, 3157-3171 (1997)
[6] K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin Dyes”, Sol. Energy Mater. Sol. Cells, 77, 89-103 (2003)
[7] T. Horiuchi, H. Miura, S. Uchida, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells”, J. Photochem. Photobiol. A, 164, 29-32 (2004)
[8] N. Papageorgiou, Y. Athanassov, M. Armand, P. Bonhôte, H. Pettersson, A. Azam, M. Grätzel, “The performance and stability of ambient temperature molten salts for solar cell applications”, J. Electrochem. Soc., 143, 3099 (1996)
[9] B. O’Regan, D. T. Schwartz, “Large enhancement in photocurrent efficiency caused by UV illumination of the dye-sensitized heterojunction TiO2/RuLL’NCS/CuSCN: initiation and potential mechanisms”, Chem. Mater., 10, 1501-1059 (1998)
[10] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photo-to-electron conversion efficiencies”, Nature, 395, 583-585 (1998)
[11] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”, Nature materials, 2, 402-407 (2003)
[12] N. J. Cherepy, G. P. Smestad, M. Grätzel, J. Z. Zhang, “Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode”, J. Phys. Chem. B, 101, 9342 (1997)
[13] A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. Sol. Cells, 44, 99-117 (1996)
[14] C. Longo, A. F. Nogueira, M.-A. D. Paoli, “Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy”, J. Phys. Chem. B., 106, 5925-5930 (2002)
[15] K. Okada, H. Matsui, T. Kawashima, T. Ezure, N. Tanabe,
“100 mm x 100 mm lager-sized dye sensitized solar cells”,
J. Photochem. Photobiol. A, 164, 193-198 (2004)
[16] B. K. Koo, D. Y. Lee, H. J. Kim, W. J. Lee, J. S. Song, H. J. Kim, “Seasoning effect of dye-sensitized solar cells with different counter electrodes” J. Electroceram. 17, 79-82 (2006)
[17] T. N. Murakami, M. Grätzel, “Counter electrodes for DSC- application of functional materials as catalysts”, Inorg. Chim. Acta, 316, 572-580 (2008)
[18] M. Grätzel, “Photoelectrochemical cells”, Nature, 414, 338-344 (2001)
[19] X. T. Zhang, H. W. Liu, T. Taguchi, Q. B. Meng, O. Sato, A. Fujishima, “Show interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO¬2 films”, Sol. Energy Mater. Sol. Cells, 81, 197-203 (2004)
[20] G.P. Smestad, M. Grätzel﹐” Demonstrating electron transfer and nanotechnology: A natural dye-sensitized nanocrystalline energy converter”, J. Chem. Educ. 75, 752–756 (1998)
[21] Y. Saito, S. Kambe, T. Kitamura, Y. Wada, S. Yanagida, " Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells”, Sol. Energy Mater. Sol. Cells, 83, 1-13 (2004)
[22] J. H. Yoon, S.R. Jang, R. Vittal, J. Lee, K.J. Kim, “TiO2 nanorods as additive to TiO2 film for improvement in the performance of dye-seneitized solar cells”, J. Photochem. Photobiol. A, 180, 184-188 (2006)
[23] S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, Y. E. Sung, “Nanorod-based dye-sensitized solar cells with improved charge collection efficiency”, Adv. Mater., 20, 54-58 (2008)
[24] K. M. Lee, V. Suryanarayanan, K. C. Ho, “A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells”, Sol. Energy Mater. Sol. Cells, 91, 1416-1420 (2007)
[25] P. J. Cameron, L. M. Peter, “Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells”, J. Phys. Chem. B, 107, 14394-14400 (2003)
[26] A. Burke, S. Ito, H. Bach, J. Kwiatkowski, M. Grätzel, “The function of a TiO2 compact layer in dye sensitized solar cells incorporating planar organic dyes”, Nano Lett., 8(4), 977-981 (2008)
[27] S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Grätzel, ” Control of dark current in photoelectrochemical (TiO2/I--I3-) and dye-sensitized solar cells”, Chem. Commun., 4351–4353 (2005)
[28] P. Wang, S. M. Zakeeruddin, P. Comte, R. Charvet, R. Humphry-Baker, M. Grätzel, “Enhance the performance of dye-sensitized solar cells by Co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals”, J. Phys. Chem. B, 107, 14336-14341 (2003)
[29] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel, M. K. Nazeeruddin, M. Grätzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over
10 %”, thin solid films, 516, 4613-4619 (2008)
[30] M.Grätzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorg. Chem., 44(20), 6842 -6851 (2005)
[31] Md. K. Nazeeruddin, S.M. Zakeeruddin, J.J. Lagref, P. Liska, P. Comte, C. Barolo, G. Viscardi , K. Schenk , M. Grätzel, “Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell”, Coord. Chem. Rev., 248, 1317-1328 (2004)
[32] H. Zabri, F. Odobel, S. Altobello, S. Caramori, C.A. Bignozzi, “Efficient osmium sensitizers containing 2,2’- bipyridine -4,4’- bisphosphonic acid ligand”, J. Photochem. Photobiol. A, 166, 99-106 (2004)
[33] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, “Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B, 107, 8981-8987 (2003)
[34] G.. J. Meyer, “Efficient light-to-electrical energy conversion: nanocrystalline TiO2 films modified with inorganic sensitizers”, J. Chem. Edu., 74(6), 652-656 (1997)
[35] Y. Liu, A. Hagfeldt, X.R. Xiao, S.E. Lindquist, "Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell", Sol. Energy Mater. Sol. Cells, 55, 267-281 (1998)
[36] D.F. Watson, G.J. Meyer, “Cation effects in nanocrystalline solar cells", Coord. Chem. Rev., 248, 1391-1406 (2004)
[37] N.G. Park, S.H. Chang, J. Lagemaat, K.J. Kim, A.J. Frank, “Effect of cations on the open-circuit photovoltage and the charge-injection efficiency of dye-sensitized nanocrystalline rutile TiO2 films”, Bull. Korean Chem. Soc., 21, 985-988 (2000)
[38] H. Kusama, H. Arakawa, “Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance”, J. Photochem. Photobiol. A, 162, 441-448 (2004)
[39] H. Kusama, H. Arakawa, “Influence of pyrimidine additives in electrolytic solution on dye-sensitized solar cell performance”, J. Photochem. Photobiol. A, 160, 171-179 (2003)
[40] F. Nour-Mohammadi, H. T. Nguyen, G. Boschloo, T. Lund, “An investigation of the photosubstitution reaction between N719-dyed nanocrystalline TiO2 particles and 4-tert-butyl- pyridine” J. Photochem. Photobiol. A, 187, 348-355 (2007)
[41] G. Boschloo, L. Haggman, A. Hagfeldt, “Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructure TiO2 solar cells”, J. Phys. Chem. B, 110, 13144-13150 (2006)
[42] H. T. Nguyen, H. M. Ta, T. Lund, “Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine”, Sol. Energy Mater. Sol. Cells, 91, 1934-1942 (2007)
[43] N. Papageorgiou, W. F. Maier, M. Grätzel, “An iodine/triiodide reduction electrocatalyst for aqueous and organic media”, J. Electrochem Soc., 144(3), 876-884 (1997)
[44] G. Tsekouras, A. J. Mozer, G. G. Wallace, “Enhanced performance of dye sensitized solar cells utilizing platinum electrodeposit counter electrodes”, J. Electrochem. Soc., 155(7), K124-K128 (2008)
[45] C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, K. J. Kim, “Enhanced performance of a dye-sensitized solar cell with an electrodeposited- platinum counter electrode”, Electrochim. Acta, 53, 2890-2896 (2008)
[46] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, Kazuhiko Murata, “High-performance carbon counter electrode for dye-sensitized solar cells”, Sol. Energy Mater. Sol. Cells, 79, 459–469 (2003)
[47] Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, Q Meng, “Application of carbon materials as counter electrodes of dye-sensitized solar cells”, Electrochem. Commun., 9, 596-598 (2007)
[48] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H. Baker, P. Comte, P. Péchy, M. Grätzel, “Highly efficient dye-sensitized solar cells based on carbon black counter electrodes”, J. Electrochem. Soc., 153(12), A2255- A2261 (2006)
[49] A. J. Bard, L. R. Faulkner, “Electrochemical methods: fundamentals and applications-2nd ed.”, John Wiley, New York, 2001
[50] Q. Wang, J. E. Moser, M. Grätzel, “Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells”, J. Phys. Chem. B, 109, 14945-14953 (2005)
[51] N. Koide, Y. Chiba, T. Mitate, “Modeling of an equivalent circuit for dye-sensitized solar cells”, Appl. Phys. Lett., 84, 2433-2435 (2004)
[52] V. Yong, S. T. Ho, Robert P. H. Chang, “Modeling and simulation for dye-sensitized solar cells”, Appl. Phys. Lett., 92, 143506 (2008)
[53] N. Koide, A.Islam, Y. Chiba, L. Han, “Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit”, J. Photochem. Photobiol. A, 182, 296-305 (2006)
[54] J.R. Macdonald, “Impedance Spectroscopy”, Wiley, New York, 1987
[55] A. Hauch, A. Georg, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cell”, Electrochim. Acta, 46, 3457-3466 (2001)
[56] 胡啟章, “電化學原理與方法”, 五南圖書出版公司 (2002)
[57] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991).
[58] K. Balasubramanian, M. Burghard, “Chemically functionalized carbon nanotubes”, Small, 1, 180-192 (2005).
[59] M. S. Dresseelhaus, G. Dresseelhaus, R. Saito, ‘‘Physics of carbon nanotubes’’, Carbon, 33, 883-891 (1995).
[60] L. Ci, J. Wei, B. Wei, J.Liang, C. Xu, D. Wu, “Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method”, Carbon, 39, 319-335 (2001)
[61] 林俊言, “以流動觸媒法在垂直式爐管成長單壁奈米碳管之研究”, 國立清華大學材料科學工程學系 (2006)
[62] 曾士豪, “單壁奈米碳管量產及其光聲響性質之研究”, 國立清華大學材料科學工程學系 (2005)
[63] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, H. Arakawa, “Highly efficient photo-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells”, Sol. Energy Mater. Sol. Cells, 64, 115-134 (2000)
[64] P. Yao, L. Wang, E. Chiang, K. Ho, Y. Chen, “Nanocrystalline TiO2 for porphyrin-sensitized solar cells: A preliminary study”, Journal of Science and Engineering Technology, 4(1), 35-42 (2008)
[65] B. P. Nelson, R. Candal, R. M. Corn, M. A. Anderson, “Control of surface and ζ potentials on nanoporous TiO2 by potential-determining and specifically adsorbed ions”, Langmuir, 16, 6094-6101, (2000)
[66] W. J. Lee, E. Ramasamy, D. Y. Lee, J. S. Song, “Performance variation of carbon counter electrode based dye-sensitized solar cell”, Sol. Energy Mater. Sol. Cells, 92, 814-818 (2008)
[67] 賴冠樺, “利用循環伏安法及交流阻抗法探討染料敏化型太陽能電池之電解液”, 國立清華大學材料科學工程學系 (2007)
[68] K. Suzuki, M. Yamamoto, M. Kumagai, S. Yanagada, “Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells”, Chem. Lett., 32, 28-30 (2003)
[69] J. E. Trancik, S. C. Barton, J. Hone, “Transparent and catalytic carbon nanotube films”, Nano Lett., 8(4), 982-987 (2008)
[70] W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, “Transparent graphene /PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells”, Electrochem. Commun., 10, 1555-1558 (2008)
[71] M. C. Wu, Y. Y. Lin, S. Chen, H. C. Liao, Y. J. Wu, C. W. Chen, “Enhancing light absorption and carrier transport of P3HT by doping mulit-wall carbon nanotubes”, Chem. Phys. Lett., 468, 64-68 (2009)