簡易檢索 / 詳目顯示

研究生: 賴岱鈺
Dai-Yu Lai
論文名稱: 慣性感測器驅動電路與APM感測器相位偵測系統之研製
The Development of Inertial Sensor Driving Circuit and APM Sensor Phase Detecting System
指導教授: 柳克強
Ke-Chiang Leou
曾繁根
Fan-Gang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 148
中文關鍵詞: 陀螺儀感測器驅動電路聲波感測器正回授靜電力
外文關鍵詞: Gyroscope, Sensor, Driving-circuit, APM, Positive feedback, Electric static force
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為兩個主題,其一為陀螺儀慣性感測器之驅動晶片與共振系統研製,其二為聲波平板模式(Acoustic Plate Mode, APM)感測器的相位偵測電路之研製與量測分析。陀螺儀廣泛應用在軍事、醫學設備、民生用品等定位需求,APM感測器在本研究為應用於半導體蝕刻製程的即時監控。
    當陀螺儀處於靜止狀態時,需要致動器將之驅動,使陀螺儀的驅動軸能夠在其自然共振頻率產生振盪。本文設計一驅動電路,並且在不需要其他額外的振動設備下,致動陀螺儀,使陀螺儀在驅動軸產生共振。本研究將驅動電路與陀螺儀本體組合而成一個共振系統,利用靜電力正回授原理與巴克豪森共振判定準則,使此系統形成共振。並將設計、模擬完成的晶片,委託國家晶片中心(CIC)送至台積電製作。測試製成晶片的結果,輸出訊號是方波的形式,並與輸入訊號相位相差90˚。
    APM感測器由本實驗學長研製完成,本研究的主要目標,是將感測器置於半導體蝕刻機台上,即時監控蝕刻進行時附著在腔壁上的厚度。本文研製相位偵測電路,並以資料擷取卡擷取電路所輸出的直流電壓訊號,並利用LabVIEW®軟體進行數據分析。當蝕刻進行時,感測器的相位會隨著薄膜厚度而下降,下降率為0.72˚/ng。


    There are two topics in this thesis; one researched the vibration system for micro inertial sensor, the other researched the APM sensor phase detecting circuit.
    The gyroscope sensor applies to military equipments, medicine (surgical instruments), civil use etc. which need position information. We analyze, design, and implement the driving circuit. The object of the design is a driving system which needs none of additional equipment to actuate the sensor into a vibration mode. So we combine the driving circuit and gyroscope body as an oscillation system. By appropriate phase controlling and high-gain amplifying the signal sensed from one of driving electrodes and feeding it back to the other electrode, oscillation can be stably built up. As the driving chip is completely simulated, we handed it over to CIC for taping out by TSMC. Then we tested the implemented chip to check input and output signal phase has 90˚ phase shift and output signal is □2.5 V square waves.
    APM sensor has implemented by our lab senior member. Now we research a phase detecting circuit suited for APM sensor applied for semiconductor process real-time monitor. We used the RF electrical components to implement the circuit, and then tested it function. Finally, we set the sensor on the etching machine wall and used the phase detecting circuit to monitor the sensor phase variation with DAQ card and LabVIEW® program. The film coated on etcher wall thicker and heavier, the more phase decrease. The phase variation is roughly 0.68˚/nm equal 0.72˚/ng.

    目 錄 中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖目錄 IX 表目錄 XV 第一章 緒論 1 第二章 慣性感測器序言 2 2.1研究背景 2 2.2研究動機 3 2.3研究目的 4 第三章 慣性感測器簡介 6 3.1微型陀螺儀之發展史 6 3.2振動式陀螺儀簡介 7 3.2.1 Z軸振動式陀螺儀 7 3.2.2電容式陀螺儀 10 3.2.3環形振動式陀螺儀 12 3.3 陀螺儀的操作模式 16 第四章 陀螺儀驅動系統操作原理 19 4.1共振原理 19 4.2靜電力驅動原理 21 4.2.1 平行電容板 21 4.2.2 靜電力共振特性 24 4.2.3 機械共振電路 26 4.3 陀螺儀共振電路機制 28 第五章 陀螺儀驅動系統 30 5.1陀螺儀共振電路架構設計 30 5.1.1共振電路分析 31 5.1.2共振電路相位分析 33 5.1.3共振電路增益分析 37 5.2陀螺儀驅動電路組成元件設計 39 5.2.1感測緩衝器 40 5.2.2折疊疊接放大器 41 5.2.2.1 小訊號分析 43 5.2.2.2 Unity-gain frequency分析 44 5.2.2.3 迴轉率(slew rate)分析 45 5.2.3寬振幅常數互導電流鏡 47 5.2.3.1寬振幅電流鏡 47 5.2.3.2常數互導 50 5.2.3.3寬振幅常數互導電流鏡電路架構 51 5.3陀螺儀電路組成元件模擬結果 52 5.3.1感測緩衝器模擬結果 53 5.3.2折疊疊接放大器模擬結果 54 5.3.3電路系統模擬結果 55 5.3.4陀螺儀驅動晶片佈局 56 5.4陀螺儀驅動晶片測試 58 5.4.1測試平台設計 58 5.4.2測試方法與結果 59 第六章 聲波感測器序言 62 6.1研究背景 62 6.2研究動機 62 6.3研究目的 63 第七章 APM感測器簡介 65 7.1 APM感測器特性 65 7.2 APM感測器之壓電效應 66 7.3 APM質量敏感度(Mass Sensitivity of APM) 67 7.4 APM感測器 73 第八章 APM感測器相位偵測系統設計與測試 76 8.1 APM感測器系統架構 76 8.1.1 APM感測器電路架構 76 8.1.2 驅動源(壓控振盪器,VCO) 77 8.1.3 轉相式混波器(Quadrature Mixer) 79 8.2 APM感測器系統測試 83 8.2.1 監控方式與相位校正 83 8.2.2 微波源測試 87 8.2.3 轉相式混波器功能測試 89 8.2.4 資料取得時間與平均次數測試 94 第九章 APM感測器實驗結果與討論 97 9.1 APM感測器之S參數量測 97 9.1.1 量測平台 97 9.1.2 感測器S參數量測結果 100 9.1.3 感測器的重現性測試 105 9.2感測器表面厚度變化與相位變化關係量測 106 9.3 APM感測器應用於蝕刻機腔壁薄膜附著之監測 111 9.3.1電路穩定性測試 113 9.3.2 微波源頻率穩定度測試 114 9.3.3 蝕刻機於不同狀態之相位量測 114 9.3.4 電漿雜訊之探討 117 9.3.5 通入不具蝕刻性氣體之量測 119 9.3.6 通入具有蝕刻性氣體之量測 120 9.3.7 將感測器從蝕刻機台拆卸後之相位量測 128 9.4 APM感測器相位量測結果與討論 129 第十章 結論 132 10.1 研究成果 132 10.2 後續研究建議 133 附錄 135 附錄一:印刷電路板設計製作 135 1.1 陀螺儀驅動晶片測試電路板製作 135 1.2 APM感測器相位偵測電路板製作 135 1.3 轉相式混波器功能測試電路板 137 附錄二:APM感測器裝置於RIE相位量測平台設計製作 138 附錄三:薄膜材料分析 142 3.1 被蝕刻物為矽之附著薄膜材料分析 142 3.2 被蝕刻物為Oxide之附著薄膜材料分析 143 參考文獻 146

    參考文獻
    [1] Sungsu Park, and Roberto Horowitz, “Adaptive control for Z-Axis MEMS Gyroscopes,” Proceedings of the American Control Conference, Arlington VA June 25-27, 2001.
    [2] Ryszard J. Pryputniewicz, Xiangguang Tan, and Andrzej J. Przekwas, “Modeling and measurements of MEMS Gyroscopes,” Position Location and Navigation Symposium, April 2004.
    [3] 劉雪濤,高鐘毓,張嶸,”微機械慣性傳感器檢測平台的設計與應用,”電子技術應用, 2003.
    [4] Yazdi N., Ayazi F., and Najafi K., “Micromachined inertial sensors,” Proceedings of the IEEE, Vol. 86, Aug. 1998.
    [5] Sungsu Park, and Roberto Horowitz, “Adaptive Control for the Conventional Mode of Operation of MEMS Gyroscopes,” Journal of Microelectromechanical Systems, Vol. 12, No. 1, Feb. 2003.
    [6] Robert P. Leland, “Adaptive Mode Tuning for Vibrational Gyroscopes,” IEEE Transaction on Control Systems Technology, Vol. 11, No. 2, Mar. 2003.
    [7] Sungsu Park and Horowitz R., “Adaptive control for z-axis MEMS gyroscopes,” American Control Conference, 25-27 June 2001.
    [8] Farrokh Ayazi and Khalil Najafi, “Design and Fabrication of A High-Performance Polysilicon Vibrating Ring Gyroscope,” Micro Electro Mechanical Systems, Jan. 1998.
    [9] Gallacher B.J., Burdess J.S. and Harris, A.J., “Principles of a three-axis vibrating gyroscope,” Aerospace and Electronic Systems, IEEE Transactions, Vol. 37, Issue. 4, Oct. 2001.
    [10] Farrokh Ayazi and Khalil Najafi, “A HARPSS Polysilicon Vibrating Ring Gyroscope,” Journal of Microelectromechanical Systems, Vol. 10, No. 2, June 2001.
    [11] Oboe R., Antonello R., Lasalandra E., Spinola G. and Prandi L., “Control of a Z-axis MEMS Vibrational Gyroscope,” IEEE International Workshop, 25-28 Mar. 2004.
    [12] H. Wohltjen and R. Dessy, “Surface Acoustic Wave Probe for Chemical Analysis: Introduction and Instrument description,” Anal. Chem., 1979.
    [13] Michael J. Vellekoop, “Acoustic Wave Sensors and Their Technology,” Ultrasonics, Vol. 36, 1998, pp. 7-14.
    [14] I.A. Viktorov, “Rayleigh and Lamb waves,” Plenum, New York,1967.
    [15] R.L. Baer, C.A.Flory, M. Tom-Moy and D.S. Solomon, “STW Chemical Sensors,” Proc. IEEE Ultrasonics Symp., 1992, p. 293.
    [16] John A. Geen, Steven J. Sherman, John F. Chang and Stephen R. Lewis,”Single-Chip Surface Micromachined Integrated Gyroscope with 50°/h Allan Deviation,” IEEE Journal of Solid-State Circuits, Vol. 37, No. 12, Dec. 2002.
    [17] Hao Luo, “Integrated Multiple Device CMOS-MEMS IMU Systems and RF MEMS Applications,” Carnegie Mellon University, Ph.D. Dissertation, Dec., 2002.
    [18] David Johns and Ken Martin, “Analog Integrated Circuit Design,” John Wiley & Sons, INC., 1997.
    [19] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill. New York, 2001.
    [20] “Star-HSPICE Manual,” Apr. 2001.
    [21] “Full-Custom Layout Editor with Laker,” CIC Training Manual, January 2004.
    [22] Adel S. Sedra and Kenneth C. Smith, “Microelectronic circuit,” Oxford, chap. 12, 1998,.
    [23] Hector J. and De Los Santos, “Introduction to Mircoelectromechanical (MEM) Microwave System,” Artech House, Boston•London, 1999.
    [24] Sokolv, V., et al., “A GaAs Monolithic Phase Shifter for 30GHz Applications,” IEEE MTT Symp., 1983, pp. 40-44.
    [25] Lin YW, Lee S, Li SS and Nguyen CTC, “Series-resonant VHF Micromechanical Resonator Reference Oscillators ,” IEEE Journal of Solid-State Circuits, vol.39, Dec. 2004.
    [26] Bannon FD, Clark JR and Nguyen CTC, “High-Q HF Microelectromechanical Filters,” Sep. 2003.
    [27] Franck Teston, Guy Feuillard, Loic Tessier, and Marc Lethiecq, “Mass Sensitivity of Acoustic Plate Mode in Liquids,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 45, No. 5, Sep. 1998.
    [28] David M. Pozar, “Microwave Engineering,” John Wiley & Sons, INC., 1998.
    [29] 謝政宇, “應用於感測半導體製程監控之APM感測器之研製,” ESS NTHU, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE