簡易檢索 / 詳目顯示

研究生: 陳奎輔
論文名稱: 準固態染料敏化太陽能電池之開發與應用
Development and application of quasi-solid state dye-sensitized solar cells
指導教授: 蔡春鴻
陳福榮
口試委員: 蔡春鴻
陳福榮
謝建國
蘇清源
李紫原
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 141
中文關鍵詞: 臨場光固化染料敏化電解質
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    染料敏化太陽能電池(dye sensitized solar cells)多使用液態電解液,而液態電解液會造成製程時封裝的困難,包括漏液、電解液易揮發、無法有效阻隔水氣與氧氣的入侵。這些問題會造成環境污染與電池壽命不佳等問題。因此,科學家發展出固態及準固態電解質來改善此問題,但此二類電解質一般對染敏電池的二氧化鈦奈米薄膜的滲透性較差,造成電池本身光電轉換效率低下,雖有較佳電池壽命但仍然不具實用性。本實驗為求染料敏化電池能真的具有商用的可行性,特針對準固態電解質的滲透性作三種製程上的改良,皆具有不錯的成果。
    第一種製程,本實驗成功將以在工業界使用多年的PVB高分子加工,希望可做出內含染料敏化太陽能電池的安全性膠合玻璃,本實驗令PVB成為染料敏化太陽能電池的固態電解質,其離子導電度最高可達1.1 x 10-3S/cm,使用此導離子PVB薄膜的元件經EIS測試實了發現此類元件中第一個含四個半圓的EIS圖譜,證實了此導離子PVB薄膜產生另一組抗,而其光電轉換效率仍可達5.38%,約為使用液態電解液的94%,且元件壽命超過3000小時,總發電量也超過液態電池的2.92倍,此實驗可增加染料敏化電池的未來實用可能性。
    第二種製程,本實驗利用有機溶劑對PVB高分子的可溶性,成功研發出染料敏化中第一個自發性臨場成膠(in-situ gelation)的準固態電解質,應用此ISG電解質的染料敏化太陽能電池元件光電轉化效率可達4.86%,約為使用液態電解液的98%,另外,為增加染料敏化電池對紫外光的抵抗能力,本實驗更在電解質中混入的紫外光吸收劑,可減少紫外光的傷害與增加元件壽命至超過2100小時以上。除此之外,此元件更用來驅動25平方公分(5 x 5 cm2)的電致變色元件,實驗證實電致變色元件的變色時間只需40秒,此實驗展示了未來結合產能的染料敏化電池與節能的電致變色元件之智慧節能窗的雛型。
    第三種製程,為進一步控制電解質臨場成膠的時機,本實驗利用紫外光固化的機制製作新型的光固化型準固態電解質,此新型電解質相對於其他研究,不需經由高溫交聯反應,因此交聯的過程中染料不會因此劣化,元件的光電轉換效率也不會因此下降。應用此光固化電解質的染料敏化太陽能電池元件光電轉化效率可達4.92%,約為使用液態電解液的93%,此光固化電解質不僅改善了固有的準固態電解質的滲透性不佳的問題,其元件壽命已可達1500小時以上,此製程步驟簡單且易於工業化,對於未來染料敏化電池的商品化可能性的推進相信極具意義性。


    Table of contents Abstract……………………………………………….…………………… …...……I 摘要………………………………………….……………………… ……………...III 謝誌………………………………………….……………………… …………...…V Table of contents……………………………………………..…… …………...…...VII List of Figures……………………………………..………..………. ……….…....…XI List of Tables……………………………………………..…… …...……….....…XVI Chapter1 Introduction 1-1 Introduction…………………………………………………… ………...………1 1-2 Introduction to solar cells…………………………………….… .…………….…5 1-2-1 Classification………………………………………………… …………...……5 1-3 Motivation……………………………………………………… ……...………...11 Reference…………………………………………………………… ...……………..13 Chapter2 Literature review 2-1 The operation principle of DSSCs……………… ……………………………….17 2-2 The structure of the dye sensitized-solar cell…… ……………………………….20 2-2-1 The working electrode………………………… ………………………………20 2-2-2 The photosensitizer dye……………………… ………..………………………20 2-2-3 Electrolytes……..…………………..………… ……………………………….22 2-2-4 Counter electrodes…………………………… …..……………………………23 2-3 The photovoltaic performance of a DSSC……… ………………………..……..24 2-4 Liquid electrolyte……………………….……… ……………..…………………26 2-5 Gel electrolyte………………………….……… …………..…………………….26 2-5-1 Ionic liquid electrolyte……………………… ……….……………..………….26 2-5-2 Oligomer electrolyte……………………………………………..…………….29 2-5-3 low-molecular-weight gelator electrolyte………… …………………………...31 2-6 Polymer electrolyte………………………………… …………..………………..32 2-6-1 Plasticizer electrolyte…………………………… ………………..……………33 2-6-2 Polymer compound ionic liquid electrolyte…… ………………………………34 2-7 Light curing electrolyte………………………… …………………..……………38 Chapter3 Experimental 3-1 Experimental procedures…………………………………………..…………..…46 3-2 Experimental steps…………………………………… ………..…………...……47 3-2-1 Cleaning of electrically conductive glass………… ……………...……………47 3-2-2 Porous TiO2 film………………………………… ……………………………47 3-2-3 Work electrode preparing using screen printing m ethod………………………48 3-2-4 Immersion of the dye……………………… …………………………………..49 3-3 Preparation of electrolytic solution………… ……………………………………50 3-3-1 Preparation of liquid state electrolytic solution ………………………………..50 3-3-2 Preparation of solid state electrolytic solution …………………………………51 3-4 Principle of the measurement and analysis of the instrument… …………………52 3-4-1 Measurement instrument……………………………… ………………………52 3-4-2 Photo-voltaic efficiency analysis of solar cell………… ………………….…52 3-4-2-1 The strength for solar light to penetrate the atmospheric mass number… …..52 3-4-2-2 Photo-voltaic efficiency and conversion analysis……………………… …...53 3-4-3 Electrical characteristic analysis of the electrolyte……………………… ……54 3-4-3-1 AC-impedance method………………………………………………… ……54 3-4-3-2 Cyclic Voltammogram (CV) …………………………………………… …..56 3-4-3-3 Electrochemical Impedance Spectroscopy (EIS) ……………………… …...57 3-4-4 Surface morphology and component analysis…………………………… ……58 3-4-4-1 Scanning electron microscope (SEM) ………………………………… ……58 3-4-4-3 X ray diffraction analysis……………………………………………… ……59 Reference…………………………………………………………………… ……….61 Chapter 4 Preparation of highly efficient mixed electrolyte solution and TiO2 working electrode for the fabrication of DSSCs 4-1 Mesoporous TiO2 thin film 62 4-2 Organic solvent choosing in liquid electrolyte…………………………… …….66 4-3 The DSSC performance for the selected solvent and mixed solvent electrolyte ..66 Reference……………………………………………………………………… …….71 Chapter 5 Polyvinyl butyral-based thin film polymeric electrolyte for dye-sensitized solar cell 5-1 Introduction……………..……………...……………………………………… ...75 5-2 Results and discussion………………..……………………………………… ….77 5-2-1 The Absorbance of PVB-SPE film………………………………………… ….77 5-2-2 The surface morphology and chemical analysis of PVB-SPE film……….. .….78 5-2-3 The diffusion coefficient and ionic conductivity of ionic-PVB thin films… .…85 5-2-4 The performance and electrochemical characteristic of the cell…………… ….88 5-2-5 Long-term stability of the GBL+NMP+PVB electrolyte DSSC…………… ....93 Chapter 6 Dye Sensitized Solar Cells with In-Situ Gelation of Quasi-Solid Polymeric Electrolytes 6-1 Introduction …………………………………..………………….…………… …99 6-2 Results and discussion…………………………………………………….… …102 6-2-1 The ionic conductivity and diffusion coefficient…………………………. …102 6-2-2 The performance and electrochemical characteristic of the cell….………. …103 6-2-3 Long-term stability of the DSSCs………………………………………… …108 6-2-3-1 Comparison between LSE and PVB-based electrolytes………………… …108 6-2-3-2 Comparison between electrolytes with/without UV absorber…………… ...111 6-3 Application in the electrochromic (EC) devices…………………………… …..114 Reference……………………………………………………………………… …... 118 Chapter 7 New type of in-situ Quasi-Solid-State Dye Sensitized Solar Cells Based on UV-Solidification Process 7-1 Introduction………………………………………………………………… …..121 7-2 Results and discussion. ……...…………………………………………… ……124 7-2-1 The mechanism and penetrating ability of UV-solidification electrolyte.… …124 7-2-2 The diffusion coefficient of USEs………………………………………… …129 7-2-3 The performance and electrochemical characteristic of the cell………… …...131 7-2-4 Long-term stability of the USE-based DSSC…………………………... ……135 Reference……………………………………………………………………… ……137 Chapter 8 Conclusion Conclusion…………………………………………………………………… ….…140 List of Figures Fig. 1-1 The proportion of the world's energy use…………….……………… ………3 Fig. 1-2 the demand for energy after 1970…………..……………………….. .………3 Fig. 1-3 The solar energy reaches surface of earth…………..……………… ……...…4 Fig. 1-4 Kinds of solar cells…………………………….…………………… ………..8 Fig. 1-5 The comparisons in efficiency and cost of different generations solar cell… ..8 Fig. 1-6 The conversion efficiency for different kinds of solar cell from 1970 to 2005………………………………………………………….…...………………… …9 Fig. 1-7 The research items of DSSCs………………………………………...…… …9 Fig. 2-1 The operation principle of the proposed DSSC………………..………… …18 Fig. 2-2 The recombination reaction in the proposed DSSC……………...……… …19 Fig. 2-3 The chemical structure of RuL2(NCS)2:2TBA (N3 dye)……………… …...21 Fig. 2-4 The chemical structure of N719 dye……………………... …………… …...21 Fig. 2-5 The chemical structure of RuL’(NCS)3 (black dye) …………...……… …...21 Fig. 2-6 The chemical structure of Z907……………... ……………... ………… …..21 Fig. 2-7 Schematic Drawing of Oligomer Approaches………………….....…… …...30 Fig. 2-8 Poly(ethylene glycol) with[2-(6-Isocyanatohexylamino-carbonyl amino)-6-methyl-4[1H]pyrimidinone] Terminal Groups (PHB) ………………. ……30 Fig. 2-9 Structural formulae of gelators of different low-molecular-weights… ……..31 Fig. 2-10 Illustration for the connection of polymer PEO with net shape molecular structure polysiloxanes……………...……………...……… ……...……………....…32 Fig. 2-11 Thermo-plastic gel polymer electrolyte(TPGE)…………… ……..……….34 Fig. 2-12 Stability of thermo-plastic gel polymer electrolyte………… ……………..34 Fig. 2-13 Electro-chemistry impedance spectrum of polymer solid state electrolyte..37 Fig. 2-14 Efficiency performance of Li battery when PEGDA/ PVDF ratio is 5:5… .38 Fig. 2-15 Illustration of the process of free radical monomer through photo curing. ..39 Fig. 2-16 Light-cured solid film…………………………………………………… ...40 Fig. 3-1 Flow chart of simple experimental procedures …………………………… ..46 Fig. 3.2 Preparation flow chart of dye-sensitized-TiO2 electrode…………………… 47 Fig. 3.3 Preparation flow chart for TiO2 paste used in preparing the work electrode for screen-printing of DSSC…..……………………………………………………… …48 Fig. 3-4a Appearance of screen-printer…………………………………………… …48 Fig. 3-4b Illustration of screen-printing……………………………………...…… …49 Fig. 3-4c Illustration of work electrode………….………………………………… .. 49 Fig. 3-5 Annealing procedure chart……………….……………………………… ….49 Fig. 3-6 Appearance of PVB polymer thin film…….…………………………… …..51 Fig. 3-7 AC impedance spectroscopy……………..……………………… ………….55 Fig. 3-8 (a), (b) Illustrations of conductivity measurement of the thin film of polymer gel electrolyte……………………………………………………………… ……….56 Fig. 3-9 Nyquist plot [2] of dye sensitized solar cell……………………… …….….57 Fig. 3-10 Structural illustration of scanning electron microscope…..….… …………59 Fig.4-1a The SEM cross section view of TiO2 working electrode, the thickness for TiO2 is about 15 µm……………………………………………………… ……..……64 Fig. 4-1b. Morphology of the working electrode, which is composed of many titanium dioxide nanoparticles; the space between the particles is quite small…… ….……….64 Fig. 4-2 XRD spectrum of the working electrode……………………….. ………….65 Fig. 4-3 the J-V data curve GBL, NMP and mixed electrolyte……………… ………68 Fig. 4-4 The recombination reaction in the proposed DSSC………….…… …..……70 Fig. 5-1 The picture of PVB-SPE thin film………………………………… ……….76 Fig. 5-2 (a) The fabrication process of LSE-DSSC. 2(b) The fabrication process of PVB-SPE-DSSC…………………… ……………………………………………...…76 Fig. 5-3 Absorbance of PVB as a function of time for type I and II electrolytes…. …77 Fig. 5-4(a) show the surface morphology of as-received PVB thin film at 2,000X… 79 Fig. 5-4(b) the surface morphology of PVB thin film after immersed in type I based electrolyte for 10 minutes………………………………………………… ………….79 Fig. 5-4(c) the morphology of PVB thin film immersed in type I based electrolyte for 60 minutes………………………………………………………..……… ……….…80 Fig. 5-4(d) the surface morphology of PVB thin film immersed in type II based electrolyte for 10 minutes………………………………………………… ………….80 Fig. 5-4(e) the surface morphology of PVB thin film immersed in type II based electrolyte for 60 minutes………………………………………………… …………81 Fig. 5-5(a) EDX spectrum from as-received PVB thin film…. …………… ……….82 Fig. 5-5(b) EDX spectrum recorded from red circled positions of Fig. 4(b) and (c) for type I PVB-SPE thin film………………………………………………… ……….…82 Fig. 5-5(c) EDX spectrum recorded from red circled positions of Fig. 4(d) and (e) for type II PVB-SPE thin film………. ………………………………………… ……….83 Fig. 5-6(a) the local ion channel is formed by the dissolved PVB and the liquid electrolyte soaked by PVB film…………………………………………… ………...84 Fig. 5- 6(b) Being squeezed in the hot-press process, the sub-phase will penetrate into the porous structure of TiO2 nano-particle layer due to its better fluidity…… ………85 Fig. 5-7 the relationship of the ion conductivity of PVB-SPE with immersion time in type I and type II electrolyte……. …………………………………………… ……...88 Fig. 5-8 the J-V curve of the DSSCs with four different electrolytes type…… ……..89 Fig. 5-9(a) the EIS curves of the DSSCs with four different electrolytes type… …....91 Fig.5-9(b) the first semi-circle in EIS spectrum for DSSC with four different electrolytes type………………………………………………………………… …....91 Fig. 5-10 the long-term durabilty of type I LSE and PVB-SPE…………… ……...…93 Fig. 6-1 (a) A schematic diagram of the fabrication of ISG–DSSC. The PVB thin film is first stuck to the counter electrode. Then, the LSE is injected and the PVB thin film is automatically dissolved in the cell. (b) A schematic diagram of the fabrication of OSG–DSSC. Red rectangles represent areas of improved penetrating ability for the ISG electrolyte, which leads to improved filling of pores…….……… …………....101 Fig. 6-2 J–V curves of DSSCs with five different electrolytes………… ………....105 Fig. 6-3 EIS curves of DSSCs with five different electrolytes…………… …….....107 Fig. 6-4 Long-term durability of DSSCs with five different electrolytes… …….…111 Fig. 6-5 Long-term stability of LSE–DSSCs with and without continued exposure to UV irradiation…………………………………....……………....……… ………... .113 Fig. 6-6. Long-term stability of 10 wt% OSG and 10 wt% OSG electrolytes with different amounts of UV absorber. ………………………………....……… ……...114 Fig. 6-7 In situ transmittance (700 nm) curve of a tandem DSSC–EC device during the coloring and bleaching processes under 1 sun illumination………… ….……...116 Fig. 6-8 Three-series DSSC was applied to drive a 25 cm2 EC device: (a) coloring and (b) bleaching were observed………………………….……………....……. …….117 Fig. 7-1 (a) The fabrication process of LSE-DSSC. 1(b) The fabrication process of UV-solidification-DSSC………….…....…………….…….…………….... ………123 Fig. 7-2 The UV solidification process and mechanism……………....…… ………123 Fig. 7-3(a) shows the TiO2 nano-porous working electrode which LSE injected.…125 Fig. 7-3(b) shows the TiO2 nano-porous working electrode which USE injected and the UV irradiation time is 10s. ………….……………...….……………....…… …125 Fig. 7-3(c) shows the TiO2 nano-porous working electrode which USE injected and the UV irradiation time is 20s.…….…....………………….……………....………. 126 Fig. 7-3(d) shows the TiO2 nano-porous working electrode which USE injected and the UV irradiation time is 30s. ………….……………....………………....…… …126 Fig. 7-4(a) the EDX spectra from the TiO2 nano-porous working electrode which LSE injected………….……………....………………….………… …....………………128 Fig. 7-4(b) the EDX spectra from the TiO2 nano-porous working electrode which USE injected and the UV irradiation time is 20s. ………….……………....… ………….128 Fig. 7-5 J–V curves of DSSCs with seven different electrolytes: LSE, USE10-10s, USE10-20s, USE10-30s, USE20-10s, USE20-20s, and USE20-30s, respectively… 132 Fig. 7-6 EIS curves of DSSCs with five different electrolytes: LSE, USE10-10s, USE10-20s, USE10-30s, USE20-10s, USE20-20s, and USE20-30s, respectively…134 Fig. 7-7 Long-term durability of DSSCs with LSE and USE10-10s………… ……136 List of Tables Table 1-1 The highest conversion efficiency records for different solar cells before 2008 10 Table 4-1 The physic characteristics for different solvents……….……… .…………67 Table 4-2 The DN and J-V data for GBL,NMP and mixed electrolyte… ……………67 Table 5-1 The measured diffusion coefficient for Type I and Type II PVB-SPE electrolytes……………………………………………………………… ………..….87 Table 5-2 The J-V data of the DSSCs with four different electrolytes type….… .…...89 Table 6-1 Open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and total energy conversion efficiency (η) for LSE, 10 wt% ISG-, 20 wt% ISG-, 10 wt% OSG-, and 20 wt% OSG-device, respectively……………………… ………...105 Table 6-2 The resistance associated with semi-circles in EIS spectrum for DSSCs with five different electrolytes……………………………………………… ……………107 Table 7-1 The diffusion coefficient of seven electrolytes………………… ………130 Table 7-2 Open-circuit voltage (V oc ), short-circuit current density (J sc ), fill factor (FF), and total energy conversion efficiency (η) for seven different electrolytes: LSE, USE10-10s, USE10-20s, USE10-30s, USE20-10s, USE20-20s, and USE20-30s, respectively…………………………………………………………………… …….132

    Reference
    [1] Michael Grätzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344.
    [2] Michael Grätzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, J. Photochem. Photobiol. A:Chem., 164 (2004) 3-14.
    [3] P. Davide Cozzoli, Roberto Comparelli, Elisabetta Fanizza, M. Lucia Curri, Angela Agostiano, Danie`le Laub, Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO2Nanorods:  A Semiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution, J. Am. Chem. Soc., 126 (2004) 3868.
    [4] Anders. Hagfeldt, Michael Graetzel, Light-Induced redox reactions in nanocrystalline systems, Chem. Rev., 95 (1995) 49-68.
    [5] K. Kalyanasundaram, M. Grätzel﹐ Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coord. Chem. Rev., 177 (1998) 347-414.
    [6] Michael Grätzel, Mesoporous oxide junctions and nanostructured solar cells, Current Opinion in Colloid and Interface Science, 4 (1999) 314-321.
    [7] David Cahen, Gary Hodes, Nature of Photovoltaic Action in Dye-Sensitized Solar Cells, J.Phys.Chem. B, 104 (2000) 2053-2059.
    [8] Xin-Tong Zhang, Hong-Wu Liu, Taketo Taguchi, Qing-Bo Meng, Osamu Sato, Akira Fujishima, Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films, Sol. Energy Mater. Sol. Cells, 81 (2004) 197-203.
    [9] Shogo Nakade, Taisuke Kanzaki, Wataru Kubo, Takayuki Kitamura, Yuji Wada, Shozo Yanagida, Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1): The Case of Solar Cells Using the I-/I3- Redox Couple, J. Phys. Chem. B, 109 (2005) 3480-3487.
    [10] Kim S. Finnie, John R. Bartlett, James L. Woolfrey, Vibrational Spectroscopic Study of the Coordination of (2,2′-Bipyridyl-4,4′-dicarboxylic acid)ruthenium(II) Complexes to the Surface of Nanocrystalline Titania, Langmuir, 14 (1998) 2744-2749.
    [11]Christophe Bauer, Gerrit Boschloo, Emad Mukhtar, Anders Hagfeldt, Interfacial Electron-Transfer Dynamics in Ru(tcterpy)(NCS)3-Sensitized TiO2 Nanocrystalline Solar Cells, J. Phys.Chem. B, 106 (2002) 12693-12704.
    [12] Kazuhiro Sayama, Hideki Sugihara, Hironori Arakawa, Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye, Chem. Mater., 10 (1998) 3825-3832.
    [13] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, NATURE, 395 (1998) 583-585
    [14] Brian O’Regan, Daniel T. Schwartz, Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL’NCS/CuSCN:  Initiation and Potential Mechanisms, Chem. Mater., 10 (1998) 1501-1509.
    [15] Brian O’Regan, Daniel T. Schwartz, Efficient dye‐sensitized charge separation in a wide‐band‐gap p‐n heterojunction, J. Appl. Phys., 80 (1996) 4749-4754.
    [16] D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger, H. Schindler, Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials, Synth. Met., 125 (2002) 279-287.
    [17] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, NATURE, 395 (1998) 583-585.
    [18] Samuel Sugden, Henry Wilkins, CLXVI1.-The Parachor and Chemical Constitution. Part XII. Fused Metals and Salts, J.Chem.Soc., (1929) 1291-1298.
    [19] John S. Wilkes, Michael J. Zaworotko, Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids, J. Chem. Soc. Commun., (1992) 965-967.
    [20] Wataru Kubo, Takayuki Kitamura, Kenji Hanabusa, Yuji Wada, Shozo Yanagida, Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chem.Commun., 4 (2002) 374-375.
    [21] Hiroyuki Ohno, Masahiro Yoshizawa, Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles, Solid State Ionics, 154 (2002) 303-309.
    [22] E. Stathatos, P. Lianos, S. M. Zakeeruddin, P. Liska, M.Grätzel, A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol - Gel Nanocomposite Electrolyte Containing Ionic Liquid, Chem. Mater., 15 (2003) 1825-1829.
    [23] Peng Wang, Shaik M. Zakeeruddin, Jacques-E. Moser, Michael Grätzel, A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells, J. Phys. Chem. B, 107 (2003) 13280-13285.
    [24] Moon-Sung Kang, Jong Hak Kim, Jongok Won, Yong Soo Kang, Oligomer Approaches for Solid-State Dye-Sensitized Solar Cells Employing Polymer
    Electrolytes, J. Phys. Chem. C, 111 (2007) 5222-5228.
    [25] Shinji Murai, Satoshi Mikoshiba, Hiroyasu Sumino, Shuzi Hayase, Quasi-solid dye-sensitized solar cells containing chemically cross-linked gel How to make gels with a small amount of gelator, J. Photochem Photobiol A Chem., 148 (2002) 33-39.
    [26] Wataru Kubo, Kei Murakoshi, Takayuki Kitamura, Shiego Yoshida, Mitsuru Hakuri, Kenji Hanabusa, Hirofusa Shirai, Yuji Wada, Shozo Yanagida, Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine, J. Phys. Chem. B, 105 (2001) 12809-12815.
    [27] Wataru Kubo, Takayuki Kitamura, Kenji Hanabusa, Yuji Wada, Shozo Yanagida, Chem.Commun., 4 (2002) 374-375.
    [28] Wataru Kubo, Shingo Kambe, Shogo Nakade, Takayuki Kitamura, Kenji Hanabusa, Yuji Wada, Shozo Yanagida, Photocurrent-Determining Processes in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes, J.Phys. Chem. B 107 (2003) 4374-4381.
    [29] Wataru Kubo, Kei Murakoshi, Takayuki Kitamura, Shigeo Yoshida, Mitsuru Haruki, Kenji Hanabusa, Hirofusa Shirai, Yuji Wada, Shozo Yanagida, Quasi-solid-state dye-sensitized TiO2 solar cells: Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodine, J. Phys. Chem. B, 105(2001) 12809-12815.
    [30] Weiying Li, Junjie Kang, Xueping Li, Shibi Fang, Yuan Lin, Guiqiang Wang, Xurui Xiao, Quasi-solid-state nanocrystalline TiO2solar cells using gel network polymer electrolytes based on polysiloxanes, Chinese Science Bulletin, 48 (2003) 646-648.
    [31] Minyu Li, Shujing Feng, Shibi Fang, Xurui Xiao,Xueping Li, Xiaowen Zhou, Yuan Lin, The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytes for quasi–solid dye-sensitized solar cells, Electrochimica Acta, 52 (2007) 4858–4863.
    [32] Jihuai Wu, Sancun Hao, Zhang Lan, Jianming Lin, Miaoliang Huang, Yunfang Huang, Leqin Fang, Shu Yin, Tsugio Sato, A Thermoplastic Gel Electrolyte for Stable Quasi-Solid-State Dye-Sensitized Solar Cells, Adv. Funct. Mater, 17 (2007) 2645-2652.
    [33] Peng Wang, Shaik M. Zakeeruddin, Ivan Exnarb, Michael Grätzel, High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte, Chem. Commun., 24 (2007) 2972-2973.
    [34] Vembu Suryanarayanan, Sol. Energy Mater. Sol. Cells, 91 (2007) 1467.
    [35] Wataru Kubo, Takayuki Kitamura, Kenji Hanabusa, Yuji Wadaa, Shozo Yanagida , Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, CHEM. COMMUN., (2002) 374-375.
    [36] Sun-Hwa Yeon, Ki-Sub Kim, Sukjeong Choi, Jong-Ho Cha, and Huen Lee ,Characterization of PVdF(HFP) Gel Electrolytes Based on 1-(2-Hydroxyethyl)-3-methyl Imidazolium Ionic Liquids, J. Phys. Chem. B, (2005) 17928-17935.
    [37] Tsuyoshi Asano, Takaya Kubo, Yoshinori Nishikitani, Electrochemical properties of dye-sensitized solar cells fabricated with PVDF-type polymeric solid electrolytes, Journal of Photochemistry and Photobiology A:Chemistry, 164 (2004) 111-115.
    [38] Min-Kyu Song, Jin-Yeon Cho, Byung Won Cho, Hee-Woo Rhee, Characterization of UV-cured gel polymer electrolytes for rechargeable lithium batteries, J. Power Sources, 110 (2002) 209-215.
    [39] J.R. Nair, C. Gerbaldi , G. Meligrana , R. Bongiovanni, S. Bodoardo, N. Penazzi, P.Reale, V. Gentili, UV-cured methacrylic membranes as novel gel–polymer
    electrolyte for Li-ion batteries, J. Power Sources, 178 (2008) 751-757.
    [40] C. Gerbaldi, J.R. Nair, Shahzada Ahmad, G. Meligrana, R. Bongiovanni, S. Bodoardo, N. Penazzi, UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries, J. Power Sources, 195 (2010) 1706-1713.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE