簡易檢索 / 詳目顯示

研究生: 王家樺
Chia-Hua, Wang
論文名稱: 環氧樹脂橋接矽氧烷製備混成奈米複合材料及其特性之研究
Preparation and Properties of Nano Hybrid Composites from Epoxy-bridged Polyorganosiloxanes
指導教授: 馬振基
Chen-Chi M. Ma
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 147
中文關鍵詞: 環氧樹脂奈米複合材料矽氧烷
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討以環氧樹脂(DGEBA type epoxy resin)為主要有機鏈段材料,藉由與帶有胺基之烷氧基矽氧烷化合物(3-aminopropyltriethoxysilane,APTES)進行反應後,獲得末端具反應性矽氧烷之反應前驅物。以此種橋接聚矽氧烷中間體與烷氧金屬化合物進行奈米混成複合材料結構之製備與合成,透過一般加熱硬化方式可獲得有機無機金屬氧化物-有機高分子混成複合材料;並比較催化劑的添加量對材料結構和性質之影響。

    本研究以FT-IR、1H NMR確定前驅物之結構及其反應性;以29Si CP/MAS NMR鑑定混成複合材料鍵結結構;以TGA、TMA、DMA探討材料之熱性質及熱機械性質;以SEM、TEM觀察材料之微觀型態;並以UV-Vis和折射率量測瞭解材料之光學性質。

    在Tetrabutyltitinate (TBT)系統部份,發現材料之折射率隨著TBT量之增加而提升,當加入50 phr TBT時,折射率由1.550增至1.590;同時材料透明性良好(UV-Vis在580nm左右之穿透率約100%)。

    在Tetraethoxysilane(TEOS)系統部分,發現TEOS添加量大於20phr時,Q型取代鍵結(主要為Q3和Q4取代)結構逐漸顯現,且催化劑,BF3MEA的存在會使得Q型鍵結比例上升,形成更加緻密的交聯結構,而影響材料之熱性質和微觀型態。加入約0.2wt %的催化劑,BF3MEA時,可得到最佳的熱穩定性,焦炭率由26.8%增加到52.5%(提升量96%);加入約0.1wt%的催化劑,BF3MEA時,其尺寸安定性最佳,CTE由121μm/moC降至60.4μm/moC;加入約1.0wt%的催化劑,BF3MEA時,storage modulus由1Mpa增至6.7Mpa(提升量570%)。型態學研究方面,添加催化劑,BF3MEA者可在TEM照片中觀察到奈米等級的SiO2顆粒,且尺寸隨著添加量而改變,從20nm(0.1 wt% BF3MEA)到200nm(1 wt% BF3MEA)。


    Epoxy-bridged alkoxysilane reactive precursor has been synthesized in this study by reacting DGEBA epoxy with 3-aminopropyltriethoxysilane. Nano hybrid composites structures were prepared and investigated from the combination of epoxy-bridged alkoxysilane reactive precursor with tetraalkoxysilcate and tetraalkoxy titanate through direct thermal curing process. The effect of catalyst on the structure and properties of the nanohybrid composites were also discussed and compared.

    FT-IR and 1H NMR were used to characterize the reactivity and structure of epoxy-bridged alkoxysilane reactive precursors. The cured hybrid composite structures of epoxy-bridged alkoxysilane with tetraalkoxysilane were investigated by 29Si CP/MAS NMR. TGA, TMA, and DMA were utilized to analyze the thermal and thermal mechanical properties of the cured epoxy bridged-polysilsesquioxane nanosilica composites.

    The optical properties of the cured epoxy bridged-polysilsesquioxane nano titanianoxide composites were also discussed in this study. The refactive index of the cured epoxy bridged-polysilsesquioxane nano titanianoxide composites were found to increase from 1.55 to 1.59 when 50 phrs of tetrabutyltitinate (TBT) was mixed with epoxy-bridged alkoxysilane reactive precursor. Transparent hybrid composite film was obtained in the cured structure of epoxy bridged-polysilsesquioxane nano titanianoxide composites.

    Q4 (tetra-substituted siloxane bond) silica structure was found in the hybrid of epoxy bridged-polysilsesquioxane with nanosilica when the amount of TEOS added to the epoxy-bridged alkoxysilane reactive precursor was greater than 20phr. The existence of BF3MEA catalyst during curing reaction would help the formation Q4 silica structure from the precursors of epoxy-bridged alkoxysilane with TEOS. The thermal properties and morphologies of the cured epoxy bridged-polysilsesquioxane with nanosilica composite were also affected by adding the BF3MEA curing catalyst.

    The best thermal stability of the cured epoxy bridged-polysilsesquioxane with nanosilica composite was obtained when 0.2 weight percent of BF3MEA catalyst was used for the precursors of epoxy-bridged alkoxysilane with TEOS. Almost 96% improvement in char. yield was found in the cured epoxy bridged-polysilsesquioxane with nanosilica composite less than 0.2wt% of BF3MEA curing catalyst was used comparing with the pure cured epoxy bridged-polysilsesquioxane. When 0.1wt% of BF3MEA catalyst was used for the thermal curing epoxy-bridged alkoxysilane with TEOS, the best dimensional stability was found. The coefficient of thermal expansion was reduced from 121μm/moC to 60.4μm/moC. and the storage modulus increased from 1Mpa to 6.7Mpa(about 570% enhancement). The best storage modulus (E’) was obtained when 1.0 weight percent of BF3MEA catalyst was used for the precursors of epoxy-bridged alkoxysilane with TEOS.

    The TEM spectra of the cured epoxy bridged-polysilsesquioxane with nanosilica composite also showed that BF3MEA curing catalyst exhibited strong effect on the dimension of nanosilica form in the epoxy bridged-polysilsesquioxane matrix. The size of nanosilica formed in the epoxy bridged-polysilsesquioxane matrix changed with the amount of BF3MEA curing catalyst added. Nanosilica with 20nm diameters was found less than 0.1wt% of BF3MEA curing catalyst and the diameter of nanosilica will increase to 200 nm when more than 1wt% of BF3MEA curing catalyst was used.

    目錄 摘要 I Abstract III 謝誌 VI 目錄 VI 圖目錄 XI 表目錄 XVI 第一章 緒論 1 第二章 理論基礎與文獻回顧 8 2-1 環氧樹脂 (Epoxy Resin) 8 2-2 橋式聚有機矽氧烷(Bridged Polyorganosiloxane) 32 2-3 四烷氧基矽酮醇鹽奈米無機補強材料 52 2-4 三烷氧基矽烷奈米無機補強物 59 2-5 高折射率高分子材料 64 第三章 研究目的與內容 68 3-1 研究目的 68 3-2 研究內容 70 3-2-1 Epoxy-APTES-TBT 奈米複合材料 70 3-2-2 Epoxy-APTES-TEOS 奈米複合材料 70 3-3-3 以添加催化劑為變數 70 3-3 實驗構想流程圖 71 第四章 實驗方法 72 4-1 實驗藥品 72 4-2 實驗儀器及設備 73 4-3 實驗流程 75 4-4 實驗步驟 76 4-4-1改質環氧樹脂之前驅物製備 76 4-4-2 製備Epoxy-APTES-TBT奈米複合材料 77 4-5 測試方法 79 第五章 結果與討論 81 5-1 結構鑑定 81 5-1-1以FTIR監測前驅物合成與結構 81 5-1-2 以FT-IR監測硬化反應 85 5-1-3 以1H NMR鑑定前驅物結構 89 5-1-4 DSC硬化溫度選取 91 5-1-4以29Si CP/MAS NMR進行結構鑑定 93 5-2 熱性質分析 99 5-2-1 TGA 99 5-2-2 TMA 106 5-3 動態機械性質分析 113 5-4 光學性質分析 119 5-4-1 透光性-外觀 119 5-4-2 UV-VIS穿透度測定 121 5-4-3 折射率 125 5-5 型態學研究 128 5-5-1 矽的全能譜分析(SEM-EDS Si-mapping) 128 5-5-2 穿透式電子顯微鏡(TEM) 131 第六章 結論 135 第七章 參考文獻 137

    1. 馬振基,”高分子複合材料(上)”,正中書局,1995.
    2. M.M. Schwartz, “composite Materials Handbook”, McGraw-Hill Book Co. New York, N.Y., 1984
    3. Gregory Timp, “Nanotechnology”, Springer-Verlag New York, Inc., 1999.
    4. Michael Wilson, et.al., “Nanotechnology- basic science and emerging technologies”, University of New South Wales Press Ltd, 2002,
    5. 馬振基,”奈米材料科技原理與應用”,全華科技圖書,2003.
    6. Mitsue Koizumi, et.al., “Advanced Technology of Nano-materials”, CMC, 2001( 日文)
    7. Kajiwara Meisetsu, et.al., “ Development and Application of Inorganic-organic Hybrid Material”, CMC, 2001.( 日文)
    8. 日本化學會,” 無機有機Nano複合物質”, 學會出版Center, 1999.(日文)
    9. K.C.SheI1, et. al.,“Sol-Gel Processing of Silica", Journal of Non-Crystalline Solids, 1986, 81, 227-237
    10. R.C.Mehrotra,“Synthesis and Reaction of Metal Alkoxides”, Journal of Non-Crystalline Solids, 1988, l00, 1-15,.
    11. 桓內弘 著, 賴耿陽 譯, “環氧樹脂應用實務”, 復漢出版本土,台北,1993
    12. Dow A. Rogers, “ Epoxy-substituted organo Silicon Compounds and Method for Preparing the Same ”, U. S. Patent 2, 883, 395, 1959
    13. E. M. Yorkgitis, N. S. Eiss, G. L. Wilkes and J. E. McGrath, “ Siloxane Modified Epoxy Resins ”, Advances in Polymer Science, Epoxy Resins and Composites I, 1985, No. 72, 80
    14. J. L. Hedrick, B. Haidar, T. P. Russell and D. C. Hafer, “ Synthesis and Properties of Segmented and Block Poly (Hydroxy - Ether - Siloxane) Copolymers ”, Macromolecules, 1988, 21, 1967
    15. J. V. Crivello, and J. L. Lee, “The Synthesis Characterization and Photoinitiated Cationic Polymerization of Silicone – Containing Epoxy Resins”, J. Polym. Sci., Part A, 1990, 28, 479
    16. Ochi Mitsukazu, Kawabata Tatsuya, Yamashita Kiichi, Shimbo Masaki, Kobunshi Ronbunshu (日本高分子論文集), 1990, 47, 185
    17. Kimihiro Matsukawa, Kiichi Hasegawa, Hiroshi Inoue, Akinori Fukuda and Yasushi Arita, “ Preparation and Curing Behavior of Siloxane – Containing Epoxy Resins”, J. Polym. Sci., Part A, 1992, 30, 2045
    18. Ochi Mitsukazu, Katayama Toshio, Mimura Kenji, Yamana Hidekazu, Kobunshi Ronbunshu (日本高分子論文集), 1993, 50, 621
    19. Philip A. Fonkalsrud, “ Polyamide – Epoxy – silicone Modified Coating Compositions ”, U. S. Patent 5, 317, 046 , 1994
    20. Hann-Ho Tzong and Shan-Wang Chun, “Modification of Epoxy Resins by Hydrosilation for Electronic Encapsulation Application”, J. Appl. Polym. Sci., 1994, 54, 13
    21. Hann–Ho Tzong and Shan–Wang Chun, “Low – Stress Encapsulants by Vinylsiloxane Modification”, J. Appl. Polym. Sci., 1994, 51, 2047
    22. Jiangdong Tong, Ruke Bai, Yingfang Zou, Caiyuan Pan, and Shigeki Ichimura, Flexibility Improvement of Epoxy Resins by Using Polysiloxanes and Their Derivatives ”, J. Appl. Polym. Sci., 1994, 52, 1373
    23. Yueh–Shieh Jeng, Hann–Ho Tzong and Shan–Wang Chun, “ Aminosiloxane – Modified Epoxy Resins as Microelectronic Encapsulants ”, Die Angewandte Makromolekulare Chemie., 1995, 224, 21
    24. Shyue–Tzoo Lin and Steve K. Huang, “Study of Curing Kinetics of Siloxane - Modified DGEBA Epoxy Resins”, J. Appl. Polym. Sci., 1996, 62, 1641
    25. Tsung–Han Ho and Chun–Shan Wang, “ Modification of Epoxy Resins with Polysiloxane Thermoplastic Polyurethane for Electronic Encapsulation I. ”, Polymer, 1996, 37, 2733
    26. Tsung–Han Ho, Jenn–Hwa Wang and Chun–Shan Wang, “ Modification of Epoxy Resins with Polysiloxane TPU for Electronic Encapsulation II. ”, J. Appl. Polym. Sci., 1996, 60, 1097
    27. Ming–Chun Lee, Tsung–Han Ho and Chun–Shan Wang, “Synthesis of Tetrafunctional Epoxy Resins and Their Modification with Polydimethylsiloxane for Electronic Application”, J. Appl. Polym. Sci., 62, 217 (1996).
    28. Jeng–Yueh Shieh, Tsung–Han Ho and Chun–Shan Wang, “Synthesis and Modification of Trifunctional Epoxy Resin with Amine Terminated Polydimethylsiloxanes for Semiconductor Encapsulation Application”, Journal of Polymer Research, 1996, 3, 125
    29. Po-Hou Sung, Chien-Yang Lin, “Polysiloxane modified Epoxy Polymer Network – II. Dynamic Mechanical Behavior of Multicomponent Graft-IPNs (Epoxy / Polysiloxane / Poly propylene Glycol)”, Eur. Polym. J., 1997, 33, 231
    30. Shyue-Tzoo Lin, Steve K. Huang, “Thermal Degradation Study of Siloxane – DGEBA Epoxy copolymers”, Eur. Polym. J., 1997, 33, 365
    31. S. S. Lee, S. C. Kim, “Morphology and Properties of Polydimethyl siloxane – Modified Epoxy Resin”, J. Appl. Polym. Sci., 1997, 64, 941
    32. Emel Yilgor and Iskender Yilgor, “1, 3-bis (aminopropyl)tetra methyldisiloxane Modified Epoxy Resins : Curing and Characterization ”, Polym., 1998, 39, 1691
    33. W.C. Shih and Chen-Chi M. Ma, “Tetrafunctional Aliphatic Epoxy. (I) Synthesis and Characterization”, J.of Appl. Poly. Sci., 1998, 69, 51-58
    34. 施文昌, “改質環氧樹脂之合成方法及韌性、熱穩定性的特性研究”,國立清華大學博士論文, 1998
    35. W.C. Shih and Chen-Chi M. Ma, “Polydimethylsiloxane Containing Isocyanate Group Modified Epoxy Resin: Curing, Characterization and Properties”, J. Appl. Polym. Sci., 73, 2739-2747 (1999)
    36. 陳宏德, “聚矽氧烷改質環氧樹脂之硬化與增韌研究”, 國立清華大學碩士論文, 1997
    37. M. Ochi, R. Takahashi, A. Terauchi, “Phase structure and mechanical and adhesion properties of epoxy/silica hybrids”, Polymer, 2001, 42, 5151-5158
    38. 王豐益, “聚矽氧烷樹脂之合成與其聚摻合物之特性研究”, 國立清華大學博士論文, 2001
    39. Gui Zhi Li, Lichang Wang, H. Toghiani, Tyrone L. Daulton, Kiyohito Koyama, and Charles U. Pittman, Jr. “Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/ Ladderlike Polyphenylsilsesquioxane Blends”, Macromolecules 2001, 34, 8686-8693
    40. Jiwon Choi, Jason Harcup, Albert F. Yee, Quan Zhu, and Richard M. Laine “Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes”, J. Am. Chem. Soc., 2001, 123, 11422
    41. J. C. Cabanelas, B. Serrano, J. Gonzalez-Benito, J. Bravo, J.Baselag, ”Morphology of Epoxy/Polyorganosiloxane Reactive Blends”, Macromolecular Rapid Communication, 2001, 22, 694-699.
    42. Chin-Lung Chiang, Chen-Chi M. Ma, “Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method”, European Polymer Journal, 2002, 38, 2219–2224
    43. Chin-Lung Chiang, Feng-Yih Wanga, Chen-Chi M. Ma, Hey-Rey Changb, “Flame retardance and thermal degradation of new epoxy containing silicon and phosphorous hybrid creamers prepared by the sol-gel method”, Polymer Degradation and Stability, 2002, 77, 273–278
    44. S. Ananda Kumar, T. S. N. Sankara Narayanan, “Thermal properties of siliconized epoxy interpenetrating coatings”, Progress in Organic Coatings, 2002, 45, 323–330
    45. G.-M. Kim, H. Qin, X. Fang, F. C. Sun, P. T. Mather, ” Hybrid Epoxy-Based Thermosets Based on Polyhedral Oligosilsesquioxane: Cure Behavior and Toughening Mechanisms”, Journal of Polymer Science Part B-Polymer Physics, 2003, 41 (24), 3299-3313
    46. Chin-Lung Chian, Chen-Chi M. Ma, Feng-Yih Wang, Hsu-Chiang Kuan, “Thermo-oxidative degradation of novel epoxy containing silicon and phosphorous nanocomposites”, European Polymer Journal, 2003, 39, 825–830
    47. Jiwon Choi, Seung Gyoo Kim, and Richard M. Laine, ”Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes”, Macromolecules, 2004, 37, 99-109
    48. 黃榮茂, 王禹文, 林聖富和楊得仁, “化學化工百科辭典”, 曉園, 1992
    49. J. A. Meads, and F. S. Kipping, “Porosity in polysilsesquioxane xerogels”, J. Chem. Soc., 1915, 107, 459
    50. J. F. Brown, and L. H. Vogt, “Phase separation in alkylene-bridged polysilsesquioxane sol-gel systems”, J. Am. Chem. Soc., 1965, 87, 4313
    51. K. J. Shea, and D. A. Loy, “Bridged Polysilsesquioxanes. Molecular - Engineered Hybrid Organic – Inorganic Materials”, Chem. Mater, 2001, 13, 3306
    52. R. H. Baney, M. Itoh, A.Sakakibara, T. Suzuki, “Silsesquioxanes ”, Chem. Rev 1995; 95, 1409
    53. A. Provatas and J. G. Matisons, “Porosity in hexylene-bridged polysilsesquioxanes. Effects of monomer concentration”, TRIP 1997; 5, 10
    54. M. Tanimura, Handbook of silicon materials. Tokyo: Dow Corning Toray Silicon; 1993, 299
    55. L. H. Brown, Treatise: Silicones in protective coatings, vol. 1, Part 3. New York: Marcel Dekker; 1972, 539
    56. J. D. Lichtenhan, “Aryl-bridged polysilsesquioxanes. A new class of microporous materials”, Comments Inorg Chem 1995; 17, 115
    57. F. K. Chi “Carbon Containing Monolithic Glasses via the Sol-Gel Process”, Ceram. Engng. Sci Proc 1983; 4, 704
    58. A. S. Gozdz, “Dialkylene Carbonate-Bridged Polysilsesquioxanes. Hybrid Organic-Inorganic Sol-Gels with a Thermally Labile Bridging Group”, Polym. Adv. Technol., 1994; 5, 70
    59. Douglas A. Loy, Gergory M. Jamison, Brigitta M. Baugher, Edward M. Russick, Roger A. Assink, S. Prabakar, and Kenneth J. Shea, “Alkylene-Bridged Polysilsesquioxane Aerogels: Highly Porous Hybrid Organic-Inorganic Materials”, Journal of Non-Crystalline Solid”, 1995, 186, 44-53
    60. Douglas A. Loy and Kenneth J. Shea, “Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials”, Chem. Rev., 1995, 95, 1431-1442
    61. K. J. Shea, D. A. Loy and O. Webster, “Arylsilsesquioxane Gels and Related Materials. New Hybrids of Organic and Inorganic Networks”, J. Am. Chem. SOC. 1992, 114, 6700-6710
    62. Kyung Moon Choi and Kenneth J. Shea, “Preparation of Nano-Sized Chromium Clusters and Intimate Mixtures of Chromium/CdS Phases in a Porous Hybrid Xerogel by an Internal Doping Method, J. Am. Chem. SOC. 1994,116, 9052-9060
    63. Dale W. Schaefer, Greg Beaucage, Douglas A. Loy, Kenneth J. Shea, and J. S. Lin, “Structure of Arylene-Bridged Polysilsesquioxane Xerogels and Aerogels”, Chem. Mate., 16, 2004, 1402-1410
    64. Fengyi Liu, Lianshe Fu, Jun Wang, Qingguo Meng, Huanrong Li, Junfang Guo and Hongjie Zhang, “Luminescent film with terbium-complex-bridged polysilsesquioxanesy”, New J. Chem., 2003, 27, 233–235
    65. Douglas A. Loy, Gregory M. Jamison, Brigitta M. Baugher, Sharon A. Myers, Roger A. Assink, and Kenneth J. Shea, “Sol-Gel Synthesis of Hybrid Organic-Inorganic Materials. Hexylene- and Phenylene-Bridged Polysiloxanes”, Chem. Mater. 1996, 8, 656-663
    66. Yunfeng Lu, Hongyou Fan, Nilesh Doke, Douglas A. Loy, Roger A. Assink, David A. LaVan, and C. Jeffrey Brinker, “Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality”, J. Am. Chem. Soc. 2000, 122, 5258-5261
    67. Genevie`ve Cerveau, R. J. P. Corriu, and E. Framery, “Nanostructured Organic-Inorganic Hybrid Materials: Kinetic Control of the Texture”, Chem. Mater. 2001, 13, 3373-3388
    68. Joe¨l J. E. Moreau, Luc Vellutini, Michel Wong Chi Man, Catherine Bied, Jean-Louis Bantignies, “Self-Organized Hybrid Silica with Long-Range Ordered Lamellar Structure”, J. Am. Chem. Soc. 2001, 123, 7957-7958
    69. Genevie`ve Cerveau, Sabrina Chappellet, Robert J. P. Corriu, Bertrand Dabiens, and Jean Le Bideau, “Synthesis and Characterization of New Stable α,ω-Organo(bis-silanetriols)”, Organometallics 2002, 21, 1560-1564
    70. Mark C. Burleigh, Michael A. Markowitz, Mark S. Spector, and Bruce P. Gaber, “Porous Organosilicas: An Acid-Catalyzed Approach”, Langmuir 2001, 17, 7923-7928
    71. Nanguo Liu, Kui Yu, Bernd Smarsly, Darren R. Dunphy, Ying-Bing Jiang, andC. Jeffrey Brinker, “Self-Directed Assembly of Photoactive Hybrid Silicates Derived from an Azobenzene-Bridged Silsesquioxane”, J. AM. CHEM. SOC. 2002, 124, 14540-14541
    72. 江金龍, “以溶膠凝膠法製備磷/矽之有機-無機奈米複合材料及其難燃性與熱性質之研究”, 國立清華大學博士論文, 2003
    73. Mahendra P. Kapoor, Qihua Yang, and Shinji Inagaki, “Organization of Phenylene-Bridged Hybrid Mesoporous Silisesquioxane with a Crystal-like Pore Wall from a Precursor with Nonlinear Symmetry”, Chem. Mater., 16, 2004, 1209-1213
    74. 許嘉紋, “含橋式聚有機矽氧烷環氧樹脂奈米複合材料之合成與性質研究”,國立清華大學碩士論文, 2004
    75. 溶膠-凝膠,有機、無機混成高分子材料發展趨勢,化工資訊,1992,12
    76. 作花濟夫,”Sol-Gel 法之科學”,Agune承風社,1988.(日文)
    77. C. Jeffery Brinker, “Sol-Gel Science”, ACADEMIC PRESS, INC. 1991
    78. Ralph K. Iler, “ The chemistry of Silica”, A Wiley-Interscience Publication, John Wiley & SONS. 1994
    79. Horacio E. Bergna,“The Colloid Chemistry of Silica”, American Chemistry Society, Washinton , DC 1994.
    80. P. Edwin Plueddemann, “Silane Coupling Agent”,second edition, Plenum Press, New York and London, 1991
    81. J.C. Seferis, Polymer Handbook, 3rd ed.;Brandrup, J., Immergut, E. H., Eds,;Wiley-Interscience: New York, 451-461, 1980
    82. Van Krevelen, D. W., Properties of Polymers, 4th ed., Elsevier: Ch10, p287-320, New York, 1997.
    83. E.J.A. Pope, M. Asami, J.D. Mackenzie, “Transparent silica gel-PMMA composites”, J. Mater. Res., 4, 4, 1018-1026, 1989
    84. G.L. Wilkes, B. Wang, J.C. Hedrick, S.C. Liptak, McGrath, “New high-refractive-index organic/inorganic hybrid materials from sol-gel processing”, J. E. Macromolecules, 24, 3449-3450, 1991
    85. R.M. Davis, V.J. Nagpal, S.B. Desu, “Novel thin films of titanium dioxide particles synthesized by a sol-gel process”, J. Mater. REs, 10, 12, 3068, 1995
    86. P. N. Prasad, M. Yoshida, “Sol-gel-processed SiO2/TiO2/Poly (vinylpyrrolidone) composite materials for optical waveguides”, Chem. Mater., 8, 235, 1996
    87. M Yoshida, “TiO2 nano-particle-dispersed polyimide composite optical waveguide materials through reverse micelles”, J. of Materials Science, 32, 4047, 1997
    88. W. F. Su, H. K. Yuan, “High refractive index organic/inorganic hybrid materials prepared from polymerizable titanium/bismuth methacryl ethoxide”, ACS Polymer Preprints, 2000, 41(1),575.
    89. U.W. Suter, T. Kyprianidou-Leodidou, W. Caseri, “Size variation of PbS particles in high-refractive-index nanocomposites”, J. Phys. Chem., 98, 8992-8997, 1994
    90. U. W. Suter, T. Kyprianidou-Leodidou; W. Caseri, “High refractive index materials of iron sulfides and poly (ethylene oxide)”, J. of Mater. Res., 12, 8, 2198, 1997
    91. Yong Ni, Sixun Zheng, Kangming Nie, “Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes”, Polymer, 45, 5557-5568, 2004
    92. Andre Lee, Jun Xiao, Frank J. Feher, “New Approach in the Synthesis of Hybrid Polymers Grafted with Polyhedral Oligomeric Silsesquioxane and Their Physical and Viscoelastic Properties.”, Macromolecules, 38, 438-444, 2005
    93. Yuan-Jyh Lee, Jirh-Ming Huang, Shiao-Wei Kuo, Jian-Shing Lu, Feng-Chiu Chang, “Polyimide and Polyhedral Oligomeric Silsesquioxane Nanocomposites for Low-dielectric Applications.”, Polymer, 46, 173-181, 2005
    94. Hongzhi Liu, Sixun Zheng, Kangming Nie, “Morphology and Thermomechanical Properties of Organic-Inorganic Hybrid Composites Involoving Epoxy Resin and an Incompletely Condensed Polyhedral Oligomeric Silsesquioxane.”, Macromolecules, 46, 173-181, 2005
    95. Yan Luo, Jun Lin, Hongxia Duan, Jie Zhang, Cuikun Lin, “Self-directed Assembly of Photoactive Perylenediimide-Bridged Silsesquioxane into a Superlong Tubular Structure.”, Chem. Mater., 17, 2234-2236, 2005
    96. Joel J. E., Luc Vellutini, Michel Wong Chi Man, Catherine Bied, Philippe Dieudonne, Jean-Louis Bantignies, Jean-Louis Sauvajol, “Lamellar Bridged Silsesquioxanes: Self-Assembly through a Combination of Hydrogen Bonding and Hydrophobic Interactions.”, Chem. Eur. J., 11, 1527-1537, 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE