簡易檢索 / 詳目顯示

研究生: 戴聖輝
Dai, Sheng-Huei
論文名稱: 低電壓暨低電容暫態電壓抑制器之研究
The Study of Low Voltage and Low Capacitance Transient Voltage Suppressor
指導教授: 金雅琴
King, Ya-Chin
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 135
中文關鍵詞: 低電壓低電容暫態電壓抑制器
外文關鍵詞: Low Voltage, Low Capacitance, Transient Voltage Suppressor, TVS, Electrical Overstress, Electrostatic Discharge
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體技術進步,金氧半積體電路操作電壓由以往的5V,3.3V降至2.5V,在90 nm製程技術之後,操作電壓已經降至1.2V。在現今的積體電路技術中,這些精密的電晶體變的對於靜電放電以及暫態電壓越來越敏感。因此,用於靜電放電以及暫態電壓防護用的保護元件的額定工作電壓也應隨之降低,以提供適當的保護。
    用於防護靜電放電以及暫態電壓的保護元件,依照其保護的對象,可粗分為兩類:電源供應線以及資料傳輸線。對於電源供應線的保護元件,主要的需求在於適當的崩潰電壓以及低漏電流。然而,在降低崩潰電壓時常伴隨著漏電電流的上升。另一方面,資料傳輸線上之保護元件的則需要低電容,以避免影響到資料傳輸線上的資料傳輸速度以及資料正確性。
    在本論文中分為兩部分:第一部分是對現有的暫態電壓保護元件的改良,抑制在降低崩潰電壓時伴隨而生的漏電流。就現有元件的漏電抑制部分,利用全面性的反態離子佈殖降低元件週邊摻雜濃度,此種方法可以降低元件週邊的電場達到降低因能帶穿隧效應引起的漏電流。此種方法可以利用極少的製程變化達到改善產品性能的效果。在低電容方面,由於具有單一接面的二極體元件其崩潰電壓以及接面電容的關係受到物理上的限制。新的元件採用具有電場增強效果的結構降低崩潰電壓,突破崩潰電壓以及接面電容的物理限制。另一種方法則是利用串連兩個二極體所組成的元件,以降低電容值。此外,由於傳統上用於保護元件的二極體,其順偏操作下可承受的電流高於逆偏操作,並利用非對稱性的結構更進一步的改善低電容靜電防護以及暫態電壓保護元件的低電容特性。


    As complementary metal-oxide semiconductor (CMOS) technology progresses, the supply voltage drops from 5V and 3.3V to 2.5 V or even lower than.1.2 V for CMOS technology beyond the 90 nm technology node. The delicate transistors in modern integrated circuits (ICs) are becoming more sensitive to transient voltage stress or electrostatic discharge. Hence, the rating voltage of the corresponding protection device should be reduced to accommodate these changes.
    For power line protection, the leakage caused by band-to-band tunneling in low-voltage transient voltage suppressor (TVS) devices would be a major problem. For data line protection, one key feature is to maintain low capacitance of these TVS devices to prevent interference with the protected circuits.
    In this dissertation, there are two targets: the improvement on leakage for commercially available low-voltage TVS devices and the design of new TVS structure to effectively reduce the overall capacitance. A simple method of blanket-ion implantation is used to reduce leakage in low-voltage TVS. By adapting electric field enhancement structure, the breakdown voltage can be reduced and the relationship between the breakdown voltage and junction capacitance on conventional TVS diodes can be broken. A device with two junctions in series is another way to reduce the capacitance. Based on the current capability difference between forward and reverse biased diodes, an asymmetry structure is also used to further reduce the overall capacitance and increase the current handling capability of the two-junction device.

    Abstract (Chinese, English) I Acknowledgements III List of Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 EOS/ESD Phenomenon 2 1.3 Difference between TVS and ESD Protection Device Design 3 1.4 Organization of Dissertation 4 Chapter 2 Overview on Low Voltage Transient Voltage Suppressor Design 10 2.1 Function of a TVS Device in an Electric System 10 2.2 Conventional Low Voltage TVS Devices 11 2.3 Challenge on Low Voltage Transient Voltage Suppressors 12 2.4 Summary 18 Chapter 3 Leakage Suppression on Diode-Based Low Voltage Transient Voltage Suppressor Devices 27 3.1 Doping Profile Design of the Junction Edge 27 3.2 Sample Preparation 29 3.3 Measured I-V Characteristics and Analysis 30 3.4 Surge Capability and Device Failure Reason 34 3.5 Summary 35 Chapter 4 Low Voltage Low Capacitance TVS Device with Electric Field Enhanced Structure 50 4.1 Electric Field Enhancement Structure 50 4.2 Device Structures 51 4.3 Measured Data and Analysis 53 4.4 Device Failure Analysis 58 4.5 Summary 58 Chapter 5 Low Capacitance Transient Voltage Suppressor with Low-VBR Diode Activated BJT Configuration 79 5.1 Floating Base BJT for ESD Protection Application 79 5.2 Low VBR Diode Trigger Scheme 80 5.3 Capacitance of Low-VBR Diode Activated BJT 83 5.4 ESD Robustness, Transmission-Line Pulsed Test Results and Failure Analysis 83 5.5 Summary 86 Chapter 6 Low Capacitance Transient Voltage Suppressor using Back to Back Diode Configuration 103 6.1 Back-to-Back Diode TVS 103 6.2 Asymmetric Back-to-Back Diode TVS 105 6.3 Measurement Results and Analysis 106 6.4 Transmission-Line Pulsed I-V Results and Analysis 107 6.5 Failure Analysis and Device Optimization 109 6.6 Summary 110 Chapter 7 Conclusions 123 Reference 125 Vita 133

    Chapter 1
    [1.1] ITRS Roadmap
    [1.2] Ya-chin King, Bin Yu, Jeff Pohlman, and Chenming Hu, “Punchthrough Diode as the Transient Voltage Suppressor for Low-Voltage Electronics”, IEEE Trans. on Electron Devices, Vol. 43, No. 11, pp. 2037-2040, 1996
    [1.3] Vasile V.N. Obreja, “Capabilities and Limitations of Semiconductor Surge Voltage Suppressor,” Proc. International Semiconductor Conference (CAS'99), pp. 169-172
    [1.4] B. Jayant Baliga, Power Semiconductor Devices, Boston, MA: PWS, 1996. pp.82
    [1.5] Yuan Taur and Tak H. Ning, Fundamentals of Modern VLSI Devices. Cambridge, U.K.: Cambridge Univ. Press, 1998, pp.34, 94, 244-245
    [1.6] E. O. Kane, “Zener Tunneling in Semiconductors,” J. Phys. Chem. Solids, Vol. 12, pp. 181-188, 1959
    [1.7] Richard B. Fair and Hayden W. Wivell, “Zener and Avalanche Breakdown in As-Implanted Low Voltage Si n-p Junctions,” IEEE Trans. Electron Devices, Vol. ED-23, No. 5, pp. 512-518, May 1976
    [1.8] Universal Serial Bus (USB) Revision 2.0 specification
    [1.9] High-Definition Multimedia Interface (HDMI) Specification Release 1.3
    [1.10] Intel□ Packaging Databook, Chapter 6 ESD/EOS: An overview of electrical static discharge and electrical over stress, 2000

    [1.11] Corey Lewis, Bilal Abd-AlRahman, and Todd Simons, “Electrical Overstress (EOS) in Semiconductor Devices: How to differentiate and document EOS due to over-current or over-voltage”, 31st International Symposium for Testing and Failure Analysis (ISTFA), Nov 6-10, 2005, San Jose, USA
    [1.12] Ming-Dou Ker and Chung-Yu Wu, “Complementary-SCR ESD Protection Circuit with Integrated Finger-Type Layout for Input Pads of Submicron CMOS IC’s”, IEEE Trans. Electron Device, Vol. 43, No. 7, pp. 1297-1304, 1995

    Chapter 2
    [2.1] STMicroelectronics, TVS Catalog, SMLVT3V3
    [2.2] Vishay, TVS Catalog, SMBJ3V3, MSP3V3
    [2.3] Vasile V.N. Obreja, “Capabilities and Limitations of Semiconductor Surge Voltage Suppressor”, Proc. International Semiconductor Conference (CAS'99), pp. 169-172
    [2.4] Ya-chin King, Bin Yu, Jeff Pohlman, and Chenming Hu, “Punchthrough Diode as the Transient Voltage Suppressor for Low-Voltage Electronics”, IEEE Trans. on Electron Devices, Vol. 43, No. 11, pp. 2037-2040, 1996
    [2.5] B. Jayant Baliga, Power Semiconductor Devices. Boston, MA: PWS, 1996. pp.82
    [2.6] Yuan Taur and Tak H. Ning, Fundamentals of Modern VLSI Devices. Cambridge, U.K.: Cambridge Univ. Press, pp.34, 94, 244-245, 1998,
    [2.7] E. O. Kane, “Zener Tunneling in Semiconductors”, J. Phys. Chem. Solids, Vol. 12, pp. 181-188, 1959

    [2.8] Richard B. Fair and Hayden W. Wivell, “Zener and Avalanche Breakdown in As-Implanted Low Voltage Si N-P Junctions”, IEEE Trans. Electron Devices, Vol. ED-23, No. 5, pp. 512-518, May 1976
    [2.9] Intel□ Packaging Databook, Chapter 6 ESD/EOS: An overview of electrical static discharge and electrical over stress, 2000
    [2.10] Corey Lewis, Bilal Abd-AlRahman, and Todd Simons, “Electrical Overstress (EOS) in Semiconductor Devices: How to differentiate and document EOS due to over-current or over-voltage”, 31st International Symposium for Testing and Failure Analysis (ISTFA), Nov 6-10, 2005, San
    [2.11] D. C. Wunsch and R. B. Bell, “Determination of Threshold failure Levels of Semiconductor Diodes and Transistors due to Pulse Voltage”, IEEE Trans. Nuclear Science, Vol. 15, Issue 6, pp. 244-259, December 1968
    [2.12] Steven H. Voldman: ESD Physics and Devices (John Wiley & Sons, UK, 2004), p. 60

    Chapter 3
    [3.1] Vasile V.N. Obreja, “Capabilities and Limitations of Semiconductor Surge Voltage Suppressor,” Proc. International Semiconductor Conference (CAS'99), pp. 169-172
    [3.2] B. Jayant Baliga, Power Semiconductor Devices. Boston, MA: PWS, 1996. pp.82
    [3.3] P. Smeys, P. B. Griffin, Z. U. Rek, I. De. Wolf, and K. C. Saraswat, “The influence of process-induced stress on device characteristics and its impact on scaled device performance”, in IEDM Tech. Dig., 1996, pp.709–712.

    [3.4] P. Smeys, P. B. Griffin, Z. U. Rek, I. De. Wolf, and K. C. Saraswat, “Influence of process-induced stress on device characteristics and its impact on scaled device performance”, IEEE Trans. on Electron Devices, Vol. 46, no. 6, pp. 1245-1252, June 1999
    [3.5] Yuan Taur and Tak H. Ning, Fundamentals of Modern VLSI Devices. Cambridge, U.K.: Cambridge Univ. Press, 1998, pp.94
    [3.6] E. O. Kane, “Zener Tunneling in Semiconductors,” J. Phys. Chem. Solids, Vol. 12, pp. 181-188, 1959
    [3.7] Richard B. Fair and Hayden W. Wivell, “Zener and Avalanche Breakdown in As-Implanted Low Voltage Si N-P Junctions,” IEEE Trans. Electron Devices, Vol. ED-23, No. 5, pp. 512-518, May 1976
    [3.8] STMicroelectronics, TVS Catalog, SMLVT3V3
    [3.9] Vishay, TVS Catalog, SMBJ3V3
    [3.10] D. C. Wunsch and R. B. Bell, “Determination of Threshold failure Levels of Semiconductor Diodes and Transistors due to Pulse Voltage”, IEEE Trans. Nuclear Science, Vol. 15, Issue 6, pp. 244-259, December 1968

    Chapter 4
    [4.1] Vasile V.N. Obreja, “Capabilities and Limitations of Semiconductor Surge Voltage Suppressor,” Proc. International Semiconductor Conference (CAS'99), pp. 169-172
    [4.2] Fairchild Semiconductor, TVS Product Catalog
    [4.3] On Semiconductor, TVS Product Catalog

    [4.4] J. D. Jackson, Classical Electrodynamics, 3rd ed. New York, NY: Wiley, 1999, p.75
    [4.5] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices. Cambridge, U.K.: Cambridge Univ. Press, 1998, pp.90-94
    [4.6] D. B. Lee, “Anisotropic etching of silicon,” J. Appl. Phys., Vol. 40, No. 11, pp. 4569-4574, 1969
    [4.7] Ping-Hei Chen, Hsin-Yah Peng, Chia-Ming Hsieh, and Minking K. Chyu, “The characteristic behavior of TMAH water solution for anisotropic etching on both Silicon substrate and SiO2 layer”, Sensors and Actuators A, Vol. 93, No. 2, pp.132-137, 2001
    [4.8] STMicroelectronics, TVS Catalog, SMLVT3V3
    [4.9] Vishay, TVS Catalog, SMBJ3V3
    [4.10] C. F. Hawkins, J. M. Soden, E. I. Cole Jr., and E. S. Snyder, “The Use of Light Emission in Failure Analysis of CMOS ICs”, Proc. Int. Symp. for Testing and Failure Analysis (ISTFA) (1990), pp. 55-67
    [4.11] C. Russ, K. Bock, M. Rasras, I. De Wolf, G. Groeseneken, and H. E. Maes, “Non-uniform triggering of gg-nMOSt investigated by combined emission microscopy and transmission line pulsing”, Microelectronics Reliability, Vol. 39, pp. 1551-1561, 1999

    Chapter 5
    [5.1] J. D. Cressler, “SiGe HBT Technology: A New Contender for Si-Based RF and Microwave Circuit Applications”, IEEE Trans. Microwave and Techniques, Vol. 46, No. 5, pp. 572-589, 1998

    [5.2] S. H. Voldman, “ESD Physics and Devices”, Wiley, Chichester, U. K., 2004, pp. 344, 352
    [5.3] Ming-Dou Ker and Chung-Yu Wu, “Complementary-SCR ESD Protection Circuit with Integrated Finger-Type Layout for Input Pads of Submicron CMOS IC’s”, IEEE Trans. Electron Device, Vol. 43, No. 7, pp. 1297-1304, 1995
    [5.4] Ming-Dou Ker, and Kuo-Chun Hsu, “Overview of On-Chip Electrostatic Discharge Protection Design With SCR-Based Devices in CMOS Integrated Circuits”, IEEE Trans. Device and Materials Reliability, Vol. 5, No. 2, pp. 235-249, 2005
    [5.5] B. J. Baliga, “Power Semiconductor Devices”, PWS Publishing, Boston, MA, 1995, p. 82
    [5.6] Y. Taur and T. H. Ning, “Fundamentals of Modern VLSI Devices”, Cambridge, U.K.: Cambridge Univ. Press, 1998, pp. 34, 94, 295, 313, 364
    [5.7] T. J. Maloney and N. Khurana, "Transmission Line Plising Techniques for Circuit Modeling of ESD Phenomena", EOS/ESD Symposium Proceedings, EOS-7, pp. 49-54, 1985
    [5.8] ESD Association Standard Test Method ESD STM5.1 2007, p. 10
    [5.9] K. Nikawa, "Optical beam induced resistance change (OBIRCH): overview and recent results", Proc. 16th Annu. Meet. Lasers and Electro-Optics Society (LEOS) 2003. pp. 742-743
    [5.10] L. Soon, D. T. M. Ling, M. Kuan, K. W. Yee, D. Cheong, and G. Zhang, “Application of IR-OBIRCH to the Failure Analysis of CMOS Integrated Circuits”, Proc. 10th Int. Symp. Physics and Failure Analysis of Integrated Circuits (IPFA), 2003, pp. 86-91

    [5.11] Julian Z. Chen, Ajith Amerasekera, and Tom Vrotsos, “Bipolar SCR ESD Protection Circuit for High Speed Submicron Bipolar/BiCMOS Circuits”, in IEDM Tech. Dig., 1995, pp.337-340

    Chapter 6
    [6.1] Vasile V.N. Obreja, “Capabilities and Limitations of Semiconductor Surge Voltage Suppressor”, Proc. International Semiconductor Conference (CAS'99), pp. 169-172
    [6.2] Ya-chin King, Bin Yu, Jeff Pohlman, and Chenming Hu,” Punchthrough Diode as the Transient Voltage Suppressor for Low-Voltage Electronics,” IEEE Trans. on Electron Devices, Vol. 43, No. 11, pp. 2037-2040, 1996
    [6.3] D. A. Neamen: Semiconductor Physics and Devices (McGraw-Hill, New York, 1992), p. 225, p. 274, p. 387
    [6.4] D. C. Wunsch and R. B. Bell, “Determination of Threshold failure Levels of Semiconductor Diodes and Transistors due to Pulse Voltage”, IEEE Trans. Nuclear Science, Vol. 15, Issue 6, pp. 244-259, December 1968
    [6.5] Sheng-Huei Dai, Jeng-Jie Peng, Chia-Cheng Chen, Chrong-Jung Lin, and Ya-chin King, “Low-Capacitance Low-Voltage Transient Voltage Suppressor by Diode activated SiGe HBT in SiGe HBT BiCMOS Process”, Jpn. J. Appl. Phys., Vol. 48, 04C082, 2009
    [6.6] P. Garrou, “Wafer Level Chip Scale Packaging (WL-CSP): An Overview”, IEEE Trans. Adv. Package, Vol. 23, No. 2, pp. 198-205, May 2000
    [6.7] H.-M. Hsu, J.-Y. Chang, J.-G. Su, C.-C. Tsai, S.-C. Wong, C. W. Chen, K. R. Peng, S. P. Ma, C. H. Chen, T. H. Yeh, C. H. Lin, Y. C. Sun, and C. Y. Chang, “A 0.18 □m Foundry RF CMOS Technology with 70 GHz FT for Single Cip System Solutions”, IEEE MTT-S Dig. 2001, p.1869-1872
    [6.8] J.-G. Su, H.-M. Hsu, S.-C. Wong, C.-Y. Chang, T.-Y. Huang, and Jack Y.-C. Sun, “Improving the RF Performance of 0.18 □m CMOS with Deep n-Well Implantation”, IEEE Electron Device Lett., Vol. 22, pp. 481-483, October 2001
    [6.9] Y. Taur, T. H. Ning: Fundamentals of Modern VLSI Devices (Cambridge Univ. Press, Cambridge, U.K, 1998), p. 309-311, 342-347
    [6.10] T. J. Maloney and N. Khurana, "Transmission Line Plising Techniques for Circuit Modeling of ESD Phenomena, " EOS/ESD Symposium Proceedings, EOS-7, pp. 49-54, 1985
    [6.11] ESD Association Standard Test Method ESD STM5.1 2007, p. 10
    [6.12] ON semiconductor, TVS Catalog, ESD11A5.0DT5G
    [6.13] Semtech, TVS Catalog, SLVU2.8
    [6.14] IEC 61000-4-2, Edition 1.1, 1999, pp. 18, 55
    [6.15] C. F. Hawkins, J. M. Soden, E. I. Cole Jr., and E. S. Snyder, “The Use of Light Emission in Failure Analysis of CMOS ICs”, Proc. Int. Symp. for Testing and Failure Analysis (ISTFA) (1990), pp. 55-67
    [6.16] C. Russ, K. Bock, M. Rasras, I. De Wolf, G. Groeseneken, and H. E. Maes, “Non-uniform triggering of gg-nMOSt investigated by combined emission microscopy and transmission line pulsing”, Microelectronics Reliability, Vol. 39, pp. 1551-1561, 1999

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE