研究生: |
張庭瑋 Chang, Ting-Wei. |
---|---|
論文名稱: |
鐵銠薄膜之結構與磁相變性質之研究 Study the phase transition of structures and magnetic properties of FeRh thin films |
指導教授: |
李志浩
Lee, Chih-Hao |
口試委員: |
曾院介
Tseng, Yuan-Chieh 洪雪行 Hung, Hsueh-Hsing |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 鐵銠 、磁相變 、X光繞射 、濺鍍 、薄膜 |
外文關鍵詞: | FeRh, phase transition, X-ray diffraction, Sputtering, thin film |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
反鐵磁與鐵磁介面的交換耦合偏移效應是發展自旋電子科技的關鍵之一。化學有序結構的FeRh在室溫附近,可藉由加熱至370 K具有反鐵磁相轉變成鐵磁相之第一磁相變的性質,此磁相變往往伴隨著體積的膨脹、電阻的改變、巨大磁熵的改變。本論文利用磁控濺鍍方式製備FeRh薄膜,選用兩種不同基板,一是MgO基板,另一為SrTiO3基板鍍上BaTiO3當作緩衝層,並經過不同溫度的熱退火處理,以及厚度的改變,比較兩者的不同。並且展示反鐵磁相與鐵磁相之間的磁特性及結構等變化,透過X光繞射、 X光反射率量測、掃描式電子顯微鏡、物理性質量測系統量測FeRh薄膜,分析其晶體結構、序化程度、厚度、磁性、電性等性質。特別的是在磁性分析上觀察到交換耦合偏移現象。這是第一次在同質材料中觀察到異質介面的交換耦合偏移現象。推測其一可能的原因為應力造成FeRh薄膜有不同層,另一原因為高溫退火下,造成基板與材料之間原子的擴散,最後可能造成FeRh本身具有不同相變溫度。
The exchange bias effect at ferromagnetism (FM)/antiferromagnetism(AFM) interface is a key on developing spintronic technologies with new functionality. It is well known that chemically ordered FeRh alloys with the CsCl structure show the fascinating first order magnetic phase transition from the antiferromagnetic to ferromagnetic states at around 370 K upon heating from room temperature, accompanied by an isotropic volume expansion of about 1%, a large reduction in the resistivity and a large change in entropy. FeRh thin films were prepared by magnetron sputtering on MgO(001) substrates and annealed in the temperature range of 700-900 ℃. The structure was characterized by X-ray diffraction and it showed an epitaxial FeRh thin film on MgO(001) substrates and on BaTiO3 buffered SrTiO3(001) substrates. In this paper, the structures and magnetic properties of phase transition are analyzed by using X-ray diffraction, X-ray reflectivity, scanning electron microscope and physical property measurement system. In particular, here we probe the AFM/FM of FeRh interface magnetization, and identify a new exchange bias phenomena. This is the first homogenous system with exchange bias without having a hetergenous interface of FM/AFM layer. One of the possible reason is due to the strain at interface which induced an AFM FeRh layer under the FM FeRh layer. The other possibility could be due to the interdiffusion of atoms from neighboring layer into FeRh at higher temperature resulting in change of FM/AFM phase transition temperature, so that AFM is formed in the heavy doped FeRh layer under the FM FeRh layer.
1. 金重勳, 磁性技術手冊 中華民國磁性技術學會出版 B.D. Cullity , Introduction to magnetic materials 近角聰信 著,張喣 李學養 譯, 磁性物理學, 聯經出版.
2. Meiklejohn, W.H. and C.P. Bean, New Magnetic Anisotropy. Physical Review, 1957. 105(3): p. 904-913.
3. Swartzendruber, L.J., The Fe−Rh (Iron-Rhodium) System. Bulletin of Alloy Phase Diagrams, 1984. 5(5): p. 456-462.
4. Shirane, G., R. Nathans, and C.W. Chen, Magnetic Moments and Unpaired Spin Densities in the Fe-Rh Alloys. Physical Review, 1964. 134(6A): p. A1547-A1553.
5. Uhlir, V., J.A. Arregi, and E.E. Fullerton, Colossal Magnetic Phase Transition Asymmetry in Mesoscale FeRh Stripes. Nat Commun, 2016. 7: p. 13113.
6. Mancini, E., et al., Magnetic Phase Transition in Iron–Rhodium Thin Films Probed by Ferromagnetic Resonance. Journal of Physics D: Applied Physics, 2013. 46(24): p. 245302.
7. Zakharov A I, K.A.M., Levitin R Z and Ponyatovskii E G, Magnetic and magnetoelastic properties of a metamagnetic Fe–Rh alloy. J. Exp. Theor.Phys., 1964. 46: p. 1348–53.
8. Sandeman, K.G., Magnetocaloric materials: The Search for New Systems. Scripta Materialia, 2012. 67(6): p. 566-571.
9. Kouvel, J.S. and C.C. Hartelius, Anomalous Magnetic Moments and Transformations in the Ordered Alloy FeRh. Journal of Applied Physics, 1962. 33(3): p. 1343-1344.
10. Thiele, J.-U., S. Maat, and E.E. Fullerton, FeRh/FePt Exchange Spring Films For Thermally Assisted Magnetic Recording Media. Applied Physics Letters, 2003. 82(17): p. 2859-2861.
11. O. Tegus, E.B.c., K. H. J. Buschow & F. R. de Boer, Transition-metal-based Magnetic Refrigerants for Room-temperature Applications. NATURE, 2002. 415: p. 150-152.
12. Kouvel, J.S., Unusual Nature of the Abrupt Magnetic Transition in FeRh and Its Pseudobinary Variants. Journal of Applied Physics, 1966. 37(3): p. 1257-1258.
13. Maat, S., J.U. Thiele, and E.E. Fullerton, Temperature and Field Hysteresis of The Antiferromagnetic-to-ferromagnetic Phase Transition in Epitaxial FeRh Films. Physical Review B, 2005. 72(21): p. 214432.
14. Barua, R., et al., Multivariable Tuning of The Magnetostructural Response of a Ni-modified FeRh Compound. Journal of Alloys and Compounds, 2016. 689: p. 1044-1050.
15. Barua, R., F. Jiménez-Villacorta, and L.H. Lewis, Predicting Magnetostructural Trends in FeRh-based Ternary Systems. Applied Physics Letters, 2013. 103(10): p. 102407.
16. Nývlt, M., et al., Structural and Magnetic Properties of Epitaxial FeRh-Ir(0 0 1) Thin Film Antiferromagnets. Journal of Magnetism and Magnetic Materials, 1999. 198–199: p. 737-739.
17. Cao, J., et al., Magnetization Behaviors for FeRh Single Crystal Thin Films. Journal of Applied Physics, 2008. 103(7): p. 07F501.
18. Farrow, R.F.C., et al., Control of The Axis of Chemical Ordering and Magnetic Anisotropy in Epitaxial FePt Films. Journal of Applied Physics, 1996. 79(8): p. 5967.
19. Hillion, A., et al., Low Temperature Ferromagnetism in Chemically Ordered FeRh Nanocrystals. Phys Rev Lett, 2013. 110(8): p. 087207.
20. Cherifi, R.O., et al., Electric-field Control of Magnetic Order Above Room Temperature. Nat Mater, 2014. 13(4): p. 345-51.
21. Lee, Y., et al., Large Resistivity Modulation in Mixed-phase Metallic Systems. Nat Commun, 2015. 6: p. 5959.
22. http://www.directvacuum.com/sputter.asp.
23. http://www.polifab.polimi.it/equipments/orion-8/.
24. de Vries, M.A., et al., Hall-effect characterization of The Metamagnetic Transition in FeRh. New Journal of Physics, 2013. 15(1): p. 013008.
25. Bjorck, M. and G. Andersson, GenX: an extensible X-ray reflectivity refinement program utilizing differential evolution. Journal of Applied Crystallography, 2007. 40(6): p. 1174-1178.