簡易檢索 / 詳目顯示

研究生: 吳珮瑗
Wu, Pei-Yuan
論文名稱: 利用奈米光子學中的電漿子雙線傳輸線的電路:算術運算與MoSe2輔助的非線性相干路由
Nanocircuits in photonics utilizing plasmonic two-wire transmission line: Arithmetic operations and MoSe2-assisted nonlinear coherent routing
指導教授: 黃承彬
Huang, Chen-Bin
口試委員: 劉昌樺
張允崇
黃耀緯
蕭惠心
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 62
中文關鍵詞: 電漿子奈米電路過渡金屬二硫屬化物二倍頻增強同調控制
外文關鍵詞: plasmonic, nanocircuits, TMDs, SHG-enhancement, coherent-control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近期在奈米光學元件方面的進展,尤其是表面電漿子相關的元件,已經在全光信號處理領域取得了顯著的進步,超越了傳統基於晶體管的電子學的物理限制。這些進展允許在超越繞射極限的情況下實現嚴格的空間限制,為多功能光子奈米電路的發展鋪平了道路。本研究展示了在電漿子雙線傳輸線裝置中數位集成電路的實驗實現,突顯了從串聯閘操作到組合電路中純平行操作的轉變。具體來說,展示了幾種算術電路的實現,僅需要使用單一激光束的四種預定義偏振態來完成所有的邏輯/算術操作。這些裝置展現了令人印象深刻的性能,運作於超過12.5 THz的光帶寬,因此提供了一種朝向整合在晶片上的光子處理器發展的可行方法。
    此外,過渡金屬硫族化合物(TMDs),特別是MoSe2,整合到電漿子奈米電路中,解決了與非線性奈米光子電路普遍相關的低非線性轉換效率的挑戰。這種整合顯著增強了二倍頻訊號,與原始非線性電漿電路相比,二倍頻訊號增加了13.8倍。通過調整輸入光的偏振角度,能夠實現電漿子電路二倍頻訊號的選擇性路由,其消光比達到14.86 dB,從而維持了良好的相干性。這些進展,以高效的二倍頻訊號生成、耦合和可控路由為特點,這種混合電漿子電路有希望推進在晶片上的光頻率轉換、選擇性路由、開關、邏輯操作,甚至可能的量子操作等領域的即時應用。


    Recent advancements in photonic devices, particularly those utilizing surface plasmons, have marked a significant step forward in all-optical signal processing, transcending the physical constraints of traditional transistor-based electronics. These advancements allow for tight spatial confinement beyond the diffraction limit, paving the way for multifunctional photonic nanocircuitry. This research showcases the experimental realization of Digital Integrated Circuits in plasmonic two-wire transmission-line devices, highlighting a shift from serial gate operations to pure parallel operations in combinational circuits. Specifically, the implementation of several arithmetic circuits is demonstrated, requiring only four predefined polarizations of a single laser beam for all logic/arithmetic operations. These devices exhibit impressive performance, operating at over 12.5 THz optical bandwidth, thus offering a viable approach towards the development of integrated on-chip photonics processors.
    Furthermore, the integration of transition metal dichalcogenides (TMDs), particularly MoSe2, onto plasmonic nanocircuitry, addresses the challenge of low nonlinear conversion efficiency commonly associated with nonlinear nanophotonic circuits. This integration significantly enhances second-harmonic generation (SHG) signals, achieving a 13.8-fold increase in SHG compared to the pristine nonlinear plasmonic circuits. By adjusting the input laser's polarization angle, selective routing of SHG signals within the plasmonic circuit is achieved, with routing extinction ratios reaching 14.86 dB, thereby maintaining good coherence. These advancements, characterized by efficient SHG generation, coupling, and controllable routing, position this hybrid TMD-plasmonic nanocircuitry as a promising candidate for immediate applications in areas such as on-chip optical frequency conversion, selective routing, switching, logic operations, and potentially quantum operations.

    Chapter 1 Surface Plasmon Polaritons 8 1.1. Definition 8 1.2. SPP: length scales 9 1.3. SPP: dispersion relation 9 1.4. SPP: wavelength 11 1.5. SPP: Polariton propagation length 11 1.6. SPP: penetration depth 12 Chapter 2 Digital Logic Design 13 2.1. Boolean Algebra 13 2.2. Arithmetic Operation Circuits 16 Chapter 3 Plasmonic transmission-line-based digital circuits 19 3.1. Motivation 19 3.2. Plasmonic two-wire-transmission-line 20 3.2.1. Plasmonic Wave Guide 20 3.2.2. Mode Profile of TWTL 20 3.2.3. A Polarization-Actuated SPP on TWTL routed 21 3.3. Principle of plasmonic digital logic operations 23 3.4. Plasmonic arithmetic circuits design and experimental results 26 3.4.1. 4 to 2-Encoder 26 3.4.2. OR, XOR, and NOT gates 27 3.4.3. AND gate 28 3.4.4. Half-adder 29 3.4.5. Parallel INHIBIT AND circuit 30 3.4.6. Half-subtractor 32 3.4.7. Demultiplexer 33 3.5. Structure Design 34 3.5.1. Design parameters for the plasmonic TWTL logic gate 34 3.5.2. The design details of AND gate 35 3.5.3. The design details of AND gate in the half-subtractor 36 3.5.4. The in-coupling efficiency and propagation loss 37 Chapter 4 Nonlinear coherent routing and enhancement 39 4.1. Introduction 39 4.2. Polarization dependent properties 40 4.2.1. Mathematical description of SHG from TMD Monolayer 40 4.2.2. Mathematical expressions and polarization characteristics of SPP in TWTL 42 4.2.3. Plasmonic-TMD hybrid system working principle 42 4.3. Coherent control of SHG in plasmonic-TMD hybrid system 44 4.4. SHG enhancement in plasmonic-TMD hybrid system 47 4.5. Analysis of SHG driven sources in plasmonic hybrid systems 50 Chapter 5 Methods 52 5.1. Device Fabrication 52 5.2. Experimental Setup 52 5.2.1. Linear operation 52 5.2.2. Nonlinear operation 52 5.3. Numerical Simulations 53 Chapter 6 Conclusions 54 References 56 Appendix 59

    1. Agranovich, V. M. 2012, Surface polaritons (Elsevier)
    2. Agrell, E., et al. 2016, J Optics-Uk, 18, 063002
    3. Autere, A., et al. 2018, Physical Review B, 98, 115426
    4. Barnes, W. L., Dereux, A., & Ebbesen, T. W. 2003, Nature, 424, 824
    5. Basov, D., Fogler, M., & García de Abajo, F. 2016, Science, 354, aag1992
    6. Bhowmik, D., You, L., & Salahuddin, S. 2014, Nature Nanotechnology, 9, 59
    7. Boardman, A. D. 1982, Electromagnetic surface modes (John Wiley & Sons)
    8. Brar, V. W., Sherrott, M. C., & Jariwala, D. 2018, Chemical Society Reviews, 47, 6824
    9. Butet, J., Brevet, P.-F., & Martin, O. J. 2015, ACS nano, 9, 10545
    10. Cavin, R. K., Lugli, P., & Zhirnov, V. V. 2012, P Ieee, 100, 1720
    11. Chen, T.-Y., Obermeier, J., Schumacher, T., Lin, F.-C., Huang, J.-S., Lippitz, M., & Huang, C.-B. 2019a, Nano Letters, 19, 6424
    12. Chen, T.-Y., Tyagi, D., Chang, Y.-C., & Huang, C.-B. 2020a, Nano Letters, 20, 7543
    13. Chen, T. Y., Obermeier, J., Schumacher, T., Lin, F. C., Huang, J. S., Lippitz, M., & Huang, C. B. 2019b, Nano Lett, 19, 6424
    14. Chen, T. Y., Tyagi, D., Chang, Y. C., & Huang, C. B. 2020b, Nano Lett, 20, 7543
    15. Chen, Y., et al. 2022, Nature Nanotechnology, 17, 1178
    16. Cohen, M., Zalevsky, Z., & Shavit, R. 2013, Nanoscale, 5, 5442
    17. Dai, W. H., Lin, F. C., Huang, C. B., & Huang, J. S. 2014, Nano Lett, 14, 3881
    18. Davis, T. J., Gomez, D. E., & Roberts, A. 2017, Nanophotonics, 6, 543
    19. Davis, T. J., Gómez, D. E., & Roberts, A. 2016, Nanophotonics, 6, 543
    20. de Hoogh, A., Opheij, A., Wulf, M., Rotenberg, N., & Kuipers, L. 2016, ACS photonics, 3, 1446
    21. Dong, J. Y., Wang, M., Zhou, Y. H., Zhou, C., & Wang, Q. B. 2020, Angew Chem Int Edit, 59, 15038
    22. Fernandez-Pacheco, A., Streubel, R., Fruchart, O., Hertel, R., Fischer, P., & Cowburn, R. P. 2017, Nature Communications, 8, 15756
    23. Fu, Y. L., Hu, X. Y., Lu, C. C., Yue, S., Yang, H., & Gong, Q. H. 2012, Nano Lett, 12, 5784
    24. Gao, L., Chen, L., Wei, H., & Xu, H. X. 2018, Nanoscale, 10, 11923
    25. Gao, X., Zhang, J., Zhang, H. C., Liu, L., Ma, Q., Xu, P., & Cui, T. J. 2020, Advanced Optical Materials, 8, 1902058
    26. Geisler, P., et al. 2013a, Physical Review Letters, 111, 183901
    27. Geisler, P., et al. 2013b, Phys Rev Lett, 111, 183901
    28. ---. 2013c, Physical Review Letters, 111
    29. Granados del Águila, A. s., et al. 2019, ACS nano, 13, 13006
    30. Grudinin, D., et al. 2023, Materials Horizons
    31. Han, C., & Ye, J. 2020, Nature communications, 11, 713
    32. Khan, A. R., et al. 2022, Advanced Functional Materials, 32
    33. Kim, J. H., Lee, J., Kim, H., Yun, S. J., Kim, J., Lee, H. S., & Lee, Y. H. 2019, Sci Rep-Uk, 9, 9164
    34. Lee, H. S., Luong, D. H., Kim, M. S., Jin, Y., Kim, H., Yun, S., & Lee, Y. H. 2016a, Nature communications, 7, 13663
    35. Lee, H. S., Luong, D. H., Kim, M. S., Jin, Y., Kim, H., Yun, S., & Lee, Y. H. 2016b, Nature Communications, 7, 13663
    36. Li, Y., et al. 2022, Nature Communications, 13, 3138
    37. Li, Y., Kang, M., Shi, J., Wu, K., Zhang, S., & Xu, H. 2017, Nano letters, 17, 7803
    38. Li, Y., Rao, Y., Mak, K. F., You, Y., Wang, S., Dean, C. R., & Heinz, T. F. 2013, Nano letters, 13, 3329
    39. Lopez-Suarez, M., Neri, I., & Gammaitoni, L. 2016, Nature Communications, 7, 12068
    40. Maldovan, M. 2013, Nature, 503, 209
    41. Maram, R., et al. 2020, Nature Communications, 11, 5839
    42. Markov, I. L. 2014, Nature, 512, 147
    43. Meng, Y., et al. 2021, Light: Science & Applications, 10, 235
    44. Mennel, L., Paur, M., & Mueller, T. 2019, APL Photonics, 4, 034404
    45. Michel, A.-K. U. 2021, Light, Science & Applications, 10
    46. Ochs, M., Zurak, L., Krauss, E., Meier, J., Emmerling, M., Kullock, R., & Hecht, B. 2021, Nano Letters, 21, 4225
    47. Ozbay, E. 2006, Science, 311, 189
    48. Palik, E. D. 1998, Handbook of optical constants of solids, Vol. 3 (Academic press)
    49. Pallares, R. M., Bosman, M., Thanh, N. T. K., & Su, X. D. 2016, Nanoscale, 8, 19973
    50. Peng, C. N., Li, J. Y., Liao, H. M., Li, Z., Sun, C. W., Chen, J. J., & Gong, Q. H. 2018, Acs Photonics, 5, 1137
    51. Petit, L., et al. 2020, Nature, 580, 355
    52. Quan, J., Cotrufo, M., Li, X., & Alù, A. 2024, in Plasmonic Materials and Metastructures (Elsevier), 163
    53. Raether, H. 1988, Springer Tracts in Modern Physics, 111, 1
    54. Roth Jr, C. H., Kinney, L. L., & John, E. B. 2020, Fundamentals of logic design (Cengage Learning)
    55. Sang, Y. G., et al. 2018, Adv Opt Mater, 6, 1701368
    56. Scheucher, M., Hilico, A., Will, E., Volz, J., & Rauschenbeutel, A. 2016, Science, 354, 1577
    57. Seyler, K. L., et al. 2015, Nature nanotechnology, 10, 407
    58. Shi, J., He, X., Chen, W., Li, Y., Kang, M., Cai, Y., & Xu, H. 2022, Nano Letters, 22, 688
    59. Spreyer, F., Ruppert, C., Georgi, P., & Zentgraf, T. 2021, ACS nano, 15, 16719
    60. Tiecke, T., Thompson, J. D., de Leon, N. P., Liu, L., Vuletić, V., & Lukin, M. D. 2014, Nature, 508, 241
    61. Vajner, D. A., Rickert, L., Gao, T., Kaymazlar, K., & Heindel, T. 2022, Advanced Quantum Technologies, 5, 2100116
    62. Wang, F. F., Gong, Z. B., Hu, X. Y., Yang, X. Y., Yang, H., & Gong, Q. H. 2016, Sci Rep-Uk, 6
    63. Wang, Z., et al. 2018, ACS nano, 12, 1859
    64. Wei, H., et al. 2011a, Nano Letters, 11, 471
    65. Wei, H., Wang, Z. X., Tian, X. R., Kall, M., & Xu, H. X. 2011b, Nature Communications, 2, 387
    66. Wei, H., & Xu, H. X. 2012, Nanophotonics, 1, 155
    67. Willner, A. E., Khaleghi, S., Chitgarha, M. R., & Yilmaz, O. F. 2014, J Lightwave Technol, 32
    68. Wu, P.-Y., Chang, Y.-C., & Huang, C.-B. 2022, Nanophotonics, 11, 3623
    69. Xie, J. Y., Niu, X. X., Hu, X. Y., Wang, F. F., Chai, Z., Yang, H., & Gong, Q. H. 2017, Nanophotonics, 6, 1161
    70. Zayats, A. V., & Smolyaninov, I. I. 2003, Journal of Optics A: Pure and Applied Optics, 5, S16
    71. Zayats, A. V., Smolyaninov, I. I., & Maradudin, A. A. 2005, Physics reports, 408, 131

    QR CODE