研究生: |
廖振傑 Liao, Chen-Chieh |
---|---|
論文名稱: |
使用AFM觀察甲醇催化反應奈米級CO2氣泡產生與脫離 Observation of the mechanism of methanol catalyzed CO2 nano bubbles by methanol by AFM |
指導教授: |
曾繁根
Tseng, Fan-Gang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 直接甲醇燃料電池 、原子力顯微鏡 、力曲線 、奈米級氣泡 、電化學 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球快速工業化的發展,天然資然快速消耗。所以發展替代能源是不
可避免的趨勢。而燃料電池具有低汙染且高能量轉換效率的優點,更是被廣
泛研究。而在直接甲醇燃料電池的發展中,陽極氣泡堆積的問題一直影響著
反應效能。而在微米等級的氣泡動力學行為已有許多相關的研究了,然而在
奈米等級的氣泡成長與反應的行為卻是鮮少人在探討。故本篇想探討並且了
解在奈米尺度下氣泡的動力學行為,期待在深入了解之後,能提出有效解決
陽極氣泡堆積的方法。
實驗初期先用雙氧水模擬氣泡生成,並加入AFM的測量其生長的高度、速度
與力曲線相關分析。之後實驗將結合AFM與電化學系統,實際觀察甲醇反應產
生的奈米級CO 2 氣泡的相關動力學行為。
[1] C. Y. W. G.Q. Lu, "Electrochemical and flow characterization of a direct methanol fuel cell," Journal of Power Sources, vol. 134, pp. 33-40, 2004.
[2] J. C. z. He, D. Liu, H. Tang, W, Deng, Y. Kuang, "Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidatio," Mater. Chem. Phy. , vol. 85, p. 396, 2004.
[3] 莊睿欣, "觀察甲醇燃料電池陽極氣泡產生與脫離現象-以雙氧水代替甲醇模擬氣泡的生成," ed, 2005.
[4] S. K. Wang, et al., "Electrocatalytic properties improvement on carbon-nanotubes coated reaction surface for micro-DMFC," Journal of Power Sources, vol. 167, pp. 413-419, May 2007.
[5] Q. Liao, et al., "Visualization study on the dynamics of CO2 bubbles in anode channels and performance of a DMFC," Journal of Power Sources, vol. 171, pp. 644-651, Sep 27 2007.
[6] 林峻霆, "以奈米碳管陣列為直接甲醇燃料電池陽極鉑觸媒載體之氣體移除能力研究," 2008.
[7] 陳順林, "微型甲醇燃料電池之陽極微氣泡觀測與電催化測試研究," 國立清華大學博士論文, 2009.
[8] O. Lou Shi-Tao, Zhen-Qian Zhang, YiLi, "Nanobubbles on solid surface imaged by atomic force microscopy," JVST B-Microelectronics and Nanometer Structures, vol. 18, p. 2573, 2000.
[9] N. Ishida, Inoue, Taichi ,Miyahara, Minoru ,Higashitani, Ko, "Nano Bubbles on a Hydrophobic Surface in Water Observed by Tapping-Mode Atomic Force Microscopy," Langmuir, vol. 16, pp. 6377-6380, 2000.
[10] M. Holmberg, Kühle, Anders Mørch, Knud A. Boisen, Anja, "Nanobubble Trouble on Gold Surfaces," Langmuir, vol. 19, pp. 10510-10513, 2003.
[11] Nguyen, "Hydrodynamic interaction between an air bubble and a particle: atomic force microscopy measurements," Experimental Thermal and Fluid Science, vol. 28, pp. 387-394, 2004.
[12] J. W. G. A. Tyrrell, P., "Atomic Force Microscope Images of Nanobubbles on a Hydrophobic Surface and Corresponding Force−Separation Data," Langmuir, vol. 18, pp. 160-167, 2002.
[13] B. Bhushan, Wang, Yuliang Maali, Abdelhamid, "Coalescence and movement of nanobubbles studied with tapping mode AFM and tip–bubble interaction analysis," Journal of Physics: Condensed Matter, vol. 20, p. 485004, 2008.
[14] Z. M. Chang, "Nano-sized Bubble Detection by Atomic Force Microscopy," International Conference on Multiphase Flow, 2007.
[15] 陳沂蓉, "奈米球微影術應用於建構奈米等級之二維金球陣列," 清華大學碩士畢業論文, 2008.
[16] B. Bhushan, "Modern Tribology Handbook Volumes I & II," CRC Press, 2000.
[17] H. L. C. P. Green, "Normal and torsional spring constants of atomic force microscope cantilevers," Rev. Sci. Instrum., vol. 75, pp. 1988-1996, 2004.
[18] R. W. C. D. F. Ogletree, and M. Salmeron "Calibration of frictional forces in atomic force microscopy," Rev. Sci. Instrum., vol. 67, pp. 3298-3306, 1996.
[19] R. W. Carpick, "The study of contact, adhesion and friction at the atomic scale by atomic force microscopy," PH. D. Thesis, UCB, 1997.
[20] L. R. P. Bilas, B. Kraus, Y. Bercion, and J. L. Mansot "Quantitative characterization of friction coefficient using lateral force microscope in the wearless regime," Rev. Sci. Instrum., vol. 75, pp. 415-421, 2004.
[21] D. Veeco, "MultiMode SPM Instruction Manual Version 4.31ce," 1999.
[22] B. C. a. G. Dietler, "Force-distance curves by atomic force microscopy " Surface Science Reports, vol. 34, pp. 1-104, 1999.
[23] C. B. Prater, et al., "Probing Nano-Scale Forces with the Atomic Force Microscope."
[24] H. Hertz, "Über die Berührung fester elastischer Körper," Mathematik, vol. 92, pp. 156-171, 1881.