簡易檢索 / 詳目顯示

研究生: 劉家榮
Chia-Jung Liu
論文名稱: 藉由動態模型討論酵母菌在高溫環境下的基因群間調控網路
On Dynamic Cluster Regulatory Networks of Yeast under the Heat Shock Stress
指導教授: 陳博現
Bor-Sen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 31
中文關鍵詞: 群組動態模型高溫酵母菌
外文關鍵詞: cluster, dynamic model, heat shock, yeast
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由有時間序列的生物晶片(microarray)實驗,可以獲得大量有關於基因間調控關係的訊息。而由這些訊息可以建立出基因之間的動態模型,這些模型將顯示出基因跟基因之間的調控關係。而由於直接的去探討基因間的調控關係將會造成一連串複雜且難以看出其中調控的關鍵,所以這裡吾人藉由群組(cluster)以降低其複雜度,且由於群組起來的基因之間本身將具有一定的相關程度,這將可獲得更多有關於基因之間的關係,因吾人希望能從生物晶片中能盡量獲取其中基因間重要關係,所以又加入動態模型以尋求其中基因之間的調控關係。而這裡吾人選用目前較多文獻記載的酵母菌檢視這方法在高溫下的動態調控網路的效果。
    而其結果,吾人確能找到相關的基因調控關係之文獻記載,此方法確有一定能力以尋找出生物中的一些調控關係。藉由此方法亦可尋找出一些未知的關係將有利於未來研究時的實驗的依據。


    How to construct gene regulatory networks from microarray data has attracted research attention in recent years. Time-series profiles of gene expression generated by DNA microarrays possess rich information to construct dynamic models of transcription behaviors. In this study, with the help of correlation clustering, the AutoRegressive with eXogenous input (ARX) models is introduced to construct a gene regulatory network in response to heat shock in the environment and may provide new insights into the thermo-tolerance mechanism of biological processes under heat shock stress. If all microarray data and the related genes are included, the gene regulatory network would become too complex to get their important regulatory relationships. So a cluster regulatory network is constructed at first to simplify the construction procedure of the complex gene regulatory network of heat shock. Therefore, the fuzzy K-means algorithm is used to cluster the genes with similar expression profiles under heat shock stress. Then a cluster gene regulatory network for heat shock is constructed based on the ARX model and the averaging method. The sparseness of the cluster gene regulatory network is also considered using Akaike’s Information criterion. Finally, we construct the gene regulatory network of heat shock based on the interactive information of the constructed cluster regulatory networks to find some possible gene regulatory mechanisms under heat shock stress.

    1. Introduction ……………………………………………………… 1 2. Methods …………………………………………………………… 5 2.1 Experimental Data and Clustering of Heat Shock Genes………… 5 2.2 Identification of the Cluster Regulatory Networks……………………. 6 3. Results …………………………………………………………… 13 3.1 The Result of Fuzzy K-Means Clustering…………………………… 13 3.2 The Estimated Regulatory Mechanism of HSP26 …………………… 14 3.3 The Estimation of Regulatory Mechanism of ALD3 ………………… 16 4. Discussion ………………………………………………………… 18 References 21

    1. Allocco DJ, Kohane IS, Butte AJ. (2004). Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioformatics , 5:18
    2. Aranda A, del Olmo Ml M. (2003) Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway. Yeast. Jun;20(8):747-59.
    3. Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D. (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. Apr 1;100(7):3889-94.
    4. Boy-Marcotte E, Perrot M, Bussereau F, Boucherie H, Jacquet M.(1998) Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 180: 1044-1052.
    5. Choder M. (1991) A general topoisomerase I-dependent transcriptional repression in the stationary phase in yeast. Genes Dev. Dec;5(12A):2315-26.
    6. Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I. 1998. The transcriptional program of sporulation in budding yeast . Science 282(5389): 699-705.
    7. de Hoon MJ, Imoto S, Kobayashi K, Ogasawara N, Miyano S. (2003). Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations. Pac Symp Biocomput.:17-28.
    8. DeRisi JL, Iyer VR, Brown PO. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686.
    9. Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Nat Acad Sci USA 95(25): 14863-14868
    10. Ge H, Liu Z, Church GM, Vidal M. ( 2001). Correlation between transcriptiome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet, 29: 482-486
    11. Hwang D, Alevizos I, Schmitt WA, Misra J, Ohyama H, Todd R, Mahadevappa M, Warrington JA, Stephanopoulos G, Wong DT. 2003. Genomic dissection for characterization of cancerous oral epithelium tissues using transcription profiling. Oral Oncology 39 (3): 259-268
    12. Heyer LJ, Kruglyak S, Yooseph S. 1999. Exploring expression data: Identification and analysis of coexpressed genes. Genome Research 9(11): 1106-1115.
    13. Kosko B. (1992). Neural Networks and Fuzzy systems. Prentice Hall International. London.
    14. Navarro- JP, Prasad R, Miralles VJ, Benito RM, Serrano R. (1999). A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stressinducible ALD2 and ALD3 genes. Yeast 15: 829–842.
    15. Pedruzzi I, Burckert N, Egger P, De Virgilio C. (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J. Jun 1;19(11):2569-79.
    16. Schmitt WA Jr, Stephanopoulos G. (2003). Prediction of transcriptional profiles of Synechocystis PCC6803 by dynamic autoregressive modeling of DNA microarray data. Biotechnol Bioeng. Dec 30;84(7):855-63
    17. Schuller C, Brewster JL, Alexander MR, Gustin MC, Ruis H. (1994) The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. Sep 15;13(18):4382-9.
    18. Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N. (2003). Module networks identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet. Jun;34(2):166-76.
    19. Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D., and Friedman, N. (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 34(2), 166-76.
    20. Simonis N, Van Helden J, Cohen GN, Wodak SJ. (2004). Transcriptional regulation of protein complexes in yeast. Genome Biol., 5:R33.
    21. Stepanenko IL.(2001). [Apoptosis and response to heat shock of interference gene networks]. Mol Biol (Mosk). Nov-Dec;35(6):1063-71.
    22. Teichmann SA, Babu MM. (2002) Conservation of gene co-regulation in prokaryotes and eukaryotes. Trends Biotechnol, 20: 407-410.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE