研究生: |
許柏凱 Hsu, Po-Kai |
---|---|
論文名稱: |
利用多片晶體生成超連續光譜之模擬與量測 Simulation and Characterization of Multi-Plate Generated Supercontinuum |
指導教授: |
孔慶昌
Kung, Andrew H. |
口試委員: |
楊尚達
Yang, Shang-Da 李明昌 Lee, Ming-Chang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 超連續光譜 、超快光學 、脈衝傳遞模擬 、單發脈衝量測 、短脈衝量測 、飛秒雷射 、非線性光學 |
外文關鍵詞: | supercontinuum, ultrafast, simulation, single-shot, measurement, femtosecond, nonlinear |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用多薄片晶體產生之超連續光譜(MPC)提供一種簡便且穩定的展頻方式,透過這種分散式的晶體擺放,操作在高能量範圍之超連續光譜可以避免均勻光束裂變成多個局部光束。在這種分散式的架構中,展頻效果主要來自數片薄晶體的疊加,而在空氣中光束則重新聚焦。然則在這種多介面結構中,其展頻之機制相當複雜,在實驗上,晶體擺放之位置係由經驗法則觀察光束展頻效果決定之,因此,若想應用此方法在不同光源情形中,透徹的數值模擬及分析相當必要。在本論文中,我們成功利用包含了光致遊離現象的非線性薛丁格方程式,模擬在中心波長分別為800及1030奈米的超連續光譜在多薄片晶體中之生成,我們也分別比較計算結果及模擬數據並透過調整參數找到最佳之結果,而詳細的展頻過程則能透過脈衝更迭之視覺圖像去了解。另一方面,這種高階非線性之機制容易產生相位的變動不定,因此,一套單發脈衝之量測能夠評估發與發之間的穩定性,在本論文中,我們透過單發式的頻域分辨光學開關法(FROG)去量測經壓縮之超連續光譜並且成功紀錄僅有單發之自譜圖。透過多發間的比較,我們成功證明在多薄片晶體中產生之超連續光譜的穩定性。
Multi-plate continuum (MPC) is a compact technique for generating an octave-spanning supercontinuum that could be further compressed to an isolated pulse. The discontinuity of medium distribution prevents the formation of multifilamentation which destroys the beam quality for high power applications. With the distributed scheme, the pulse is spectrally broadened gradually in the thin solid plates and refocuses in the free space intervals. The complex nonlinear interactions, however, cannot be predicted intuitively so that the plates are placed empirically. Therefore, a thorough numerical analysis is vital for applications. In this dissertation, we demonstrate the numerical simulation by utilizing the extended nonlinear schrodinger equation for ionized media. By finely tuning the physical parameters, the optimized results of MPC at the center wavelength of 800 nm and 1030 nm are calculated and compared with the measured data respectively. Moreover, the illustrations of pulse evolution in time domain and frequency domain facilities the understanding of detailed nonlinear processes. On the other hand, the phase fluctuations could be severe in the process of high nonlinearities. A shot-to-shot characterization is necessary for evaluating the stability of MPC. Here we demonstrate the single-shot measurement by single-shot polarization-gating crossed frequency-resolved optical gating (PG XFROG) and record the preliminary results of single-shot FROG trace for nearly transform-limited MPC compressed by chirped mirrors. The comparison over traces indicates the robustness of MPC.
[1] M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature, vol. 419, pp. 803–807, 2002.
[2] P. B. Corkum and F. Krausz, “Attosecond science,” Nature Physics, vol. 3, pp. 381–387, 2007.
[3] F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys., vol.81, pp. 163– 234, 2009.
[4] G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, P. V. L. Poletto, C. Altucci, R. Velotta, S. Stagira, S. D. Silvestri, and M. Nisoli, “Iso- lated single-cycle attosecond pulses,” Science, vol. 314, pp. 443–446, 2006.
[5] R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 å via four- photon coupling in glass,” Phys. Rev. Lett., vol. 24, pp. 584–587, 1970.
[6] C.-H. Lu, Y.-J. Tsou, H.-Y. Chen, B.-H. Chen, Y.-C. Cheng, S.-D. Yang, M.-C. Chen, C.-C. Hsu, and A. H. Kung, “Generation of intense supercontinuum in con- densed media,” Optica, vol. 1, pp. 400–406, 2014.
[7] Y.-C. Cheng, C.-H. Lu, Y.-Y. Lin, and A. H. Kung, “Supercontinuum generation in a multi-plate medium,” Opt. Express, vol. 24, pp. 7224–7231, 2016.
[8] R. Trebino, FROG, pp. 101–115. Boston, MA: Springer US, 2000.
[9] T.C.Wong,M.Rhodes,andR.Trebino,“Single-shotmeasurementofthecomplete temporal intensity and phase of supercontinuum,” Optica, vol. 1, pp. 119–124, 2014.
[10] P.-H. Wang, “Single shot measurement of supercontinuum,” diploma thesis, Na- tional Tsing Hua University, 2015. unpublished thesis.
[11] G. Humbert, W. J. Wadsworth, S. G. Leon-Saval, J. C. Knight, T. A. Birks, P. S. J. Russell, M. J. Lederer, D. Kopf, K. Wiesauer, E. I. Breuer, and D. Stifter, “Super- continuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express, vol. 14, pp. 1596–1603, 2006.
[12] L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, H. Schillinger, and R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron, vol. 29, p. 51, 1997.
[13] P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, L. Wöste, and C. Ziener, “Remote sensing of the atmosphere using ultrashort laser pulses,” Appl. Phys. B, vol. 71, pp. 573–580, 2000.
[14] R. R. Alfano, Utilization of UV and IR Supercontinua in Gas-Phase Subpicosecond Kinetic Spectroscopy, pp. 299–336. Springer-Verlag New York, 2016.
[15] S. A. Kovalenko, A. L. Dobryakov, J. Ruthmann, and N. P. Ernsting, “Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing,” Phys. Rev. A, vol. 59, pp. 2369–2384, 1999.
[16] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science, vol. 288, no. 5466, pp. 635–639, 2000.
[17] H.-S. Chan, Z.-M. Hsieh, W.-H. Liang, A. H. Kung, C.-K. Lee, C.-J. Lai, R.-P. Pan, and L.-H. Peng, “Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics,” Science, vol. 331, no. 6021, pp. 1165–1168, 2011.
[18] R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A, vol. 17, pp. 1448–1453, 1978.
[19] P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3–14 μm in dielectrics and semiconductors,” Opt. Lett., vol. 10, pp. 624–626, 1985.
[20] J. H. Glownia, J. Misewich, and P. P. Sorokin, “Ultrafast ultraviolet pump–probe apparatus,” J. Opt. Soc. Am. B, vol. 3, pp. 1573–1579, 1986.
[21] C. Rolland and P. B. Corkum,“Generation of 130-fsec midinfrared pulses,” J.Opt. Soc. Am. B, vol. 3, pp. 1625–1629, 1986.
[22] J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys., vol. 78, pp. 1135–1184, 2006.
[23] S. P. Stark, J. C. Travers, and P. S. J. Russell, “Extreme supercontinuum generation to the deep uv,” Opt. Lett., vol. 37, pp. 770–772, 2012.
[24] X. Jiang, N. Y. Joly, M. A. Finger, F. Babic, G. K. L. Wong, J. C. Travers, and P. S. J. Russell, “Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core zblan photonic crystal fibre,” Nature Photonics, vol. 9, p. 133, 2015.
[25] F. Silva, D. R. Austin, A. Thai, M. Baudisch, M. Hemmer, D. Faccio, A. Coua- iron, and J. Biegert, “Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal,” Nature Communications, vol. 3, p. 807, 2012.
[26] J. Darginavičius, D. Majus, V. Jukna, N. Garejev, G. Valiulis, A. Couairon, and A. Dubietis, “Ultrabroadband supercontinuum and third-harmonic generation in bulk solids with two optical-cycle carrier-envelope phase-stable pulses at 2 μm,” Opt. Express, vol. 21, pp. 25210–25220, 2013.
[27] A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton- plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A, vol. 92, p. 033821, 2015.
[28] M. A. Foster and A. L. Gaeta, “Ultra-low threshold supercontinuum generation in sub-wavelength waveguides,” Opt. Express, vol. 12, pp. 3137–3143, 2004.
[29] M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /w/m) as2s3 chalcogenide planar waveguide,” Opt. Express, vol. 16, pp. 14938–14944, 2008.
[30] C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched linbo3 waveguide pumped by a tm-doped fiber laser system,” Opt. Lett., vol. 36, pp. 3912–3914, 2011.
[31] L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express, vol. 20, pp. 1685– 1690, 2012.
[32] P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, “A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. ii. comparison to experiment,” 1995.
[33] C. B. Schaffer, A. Brodeur, and E. Mazur,“Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Measurement Science and Technology, vol. 12, p. 1784, 2001.
[34] L. Bergé, S. Mauger, and S. Skupin, “Multifilamentation of powerful optical pulses in silica,” Phys. Rev. A, vol. 81, p. 013817, 2010.
[35] P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett., vol. 57, pp. 2268–2271, 1986.
[36] S. L. Chin, C. Rolland, P. B. Corkum, and P. Kelly, “Multiphoton ionization of xe and kr with intense 0.62-μm femtosecond pulses,” Phys. Rev. Lett., vol. 61, pp. 153–156, 1988.
[37] W. Liu and S. Chin, “Direct measurement of the critical power of femtosecond ti:sapphire laser pulse in air,” Opt. Express, vol. 13, pp. 5750–5755, 2005.
[38] C. Hauri, W. Kornelis, F. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, and U. Keller, “Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation,” Applied Physics B, vol. 79, pp. 673– 677, 2004.
[39] A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent me- dia,” Physics Reports, vol. 441, pp. 47 – 189, 2007.
[40] S. L. Chin, Femtosecond Laser Filamentation. Springer-Verlag New York, 2010.
[41] A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett., vol. 20, pp. 73–75, 1995.
[42] D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt., vol. 37, pp. 546–550, 1998.
[43] G. Agrawal, Pulse propagation in fiber, pp. 27–56. Elsevier, 2013.
[44] M. I. Weinstein, “Nonlinear schrödinger equations and sharp interpolation estimates,” Communications in Mathematical Physics, vol. 87, pp. 567–576, 1983.
[45] L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J. P. Wolf, “Ultrashort filaments of light in weakly ionized, optically transparent media,” Reports on Progress in Physics, vol. 70, p. 1633, 2007.
[46] L. Bergé, S. Skupin, and G. Steinmeyer, “Temporal self-restoration of compressed optical filaments,” Phys. Rev. Lett., vol. 101, p. 213901, 2008.
[47] C.-H. Lu, T. Witting, A. Husakou, M. J. Vrakking, A. H. Kung, and F. J. Furch, “Sub-4 fs laser pulses at high average power and high repetition rate from an all- solid-state setup,” Opt. Express, vol. 26, no. 7, pp. 8941–8956, 2018.
[48] R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time- frequency domain using frequency-resolved optical gating,” Review of Scientific Instruments, vol. 68, pp. 3277–3295, 1997.