簡易檢索 / 詳目顯示

研究生: 蔡琨偉
Tsai, Kun-Wei
論文名稱: 藉著比較幹細胞和癌細胞的基因和表觀遺傳因子的細胞週期調控網路來調查其中的癌化機制
Investigating Carcinogenesis Mechanisms by Comparing Genetic-and-epigenetic Cell Cycle Networks between Stem and Cancer Cells using NGS and Microarray Data
指導教授: 陳博現
Chen, Bor-Sen
口試委員: 莊永仁
Chuang, Yung-Jen
汪宏達
Wang, Horng-Dar
楊嘉鈴
Yang Jia-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 50
中文關鍵詞: 細胞週期進程真實基因和表觀遺傳因子的細胞週期調控網路癌化機制大機制子宮頸癌胚胎幹細胞大資料庫挖掘複合藥物次世代定序和微陣列檢測主網路投影
外文關鍵詞: cell cycle progression, real genetic-and-epigenetic cell cycle network, carcinogenic mechanism, big mechanism, cervical cancer, embryonic stem cells, big database mining, multiple drug, NGS and microarray, principal network projection
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景
    誘導多能幹細胞(iPSCs)的發現證明了再生醫學的潛力,然而有一些證據顯示了iPSCs相似於致癌病灶(OF),一種在體外產生的腫瘤細胞。這些證據顯示了幹細胞和癌細胞有著強烈的關係。而最近的研究展示了細胞週期對於發育和癌化過程的重要性。因此,如何利用大資料庫辨識出的基因和表觀遺傳因子調節來揭開在幹細胞和癌細胞細胞週期進行中所產生的癌化機制,仍然是一個值得探討的問題。

    結果
    藉著利用系統模型、系統識別以及大資料庫探勘所建構幹細胞(胚胎幹細胞, ESCs)和癌細胞(海拉細胞, HeLa cells)真實基因和表觀遺傳因子細胞週期調控網路(GECCN)。為了方便分析,真實的GECCN被主網路投影方法(PNP)簡化成HeLa cells和ESCs的核心GECCN。在這裡,我們藉著利用HeLa cells和ESCs共同的核心網路來調查細胞週期進行中所產生的癌化機制,並以此來釐清iPSCs (類ESC)潛在的癌化機制。更進一步,我們藉著HeLa cells特有的核心網路的大機制分析來調查子宮頸癌的癌化機制。藉著整合藥物資料庫的資訊以及HeLa cells 特有的核心網路分析的結果設計出治療子宮頸癌的複合藥物並最小化這個複合藥物對ESCs和HeLa cells核心網路中的其他成員的影響。

    結論
    結果顯示了iPSCs誘導因子,LIN28和OCT4分別使LET7B和HIF1A失調,造成了iPSCs癌化的風險。此外,在G1、S、G2時期基因突變和DNA甲基化的累積以及MIR29C、MIR34A、MIR98、MIR215、MIR935的失調,所造成的異常細胞增生。而異常的增生也會被M失調的MIR17所導致。在G1和G2時期,MIR192的失調會導致子宮頸癌的轉移。在S和G2時期,基因突變和DNA甲基化的累積、S中MIR34A的失調以及G2中MIR192的失調會促發無效的DNA的修復因此誘導細胞的凋亡。但在G2和S時期,基因突變和DNA甲基化的累積以及G2中MIR192的失調會提高了子宮頸癌細胞對抗凋亡的能力來防止癌細胞中不正常的DNA突變量被減少。我們最後提出了治療子宮頸癌的複合藥物,其中包含了METHOTREXATE、 QUERCETIN 和 MIMOSINE,並分別會影響ARID5B、STK17B 和 CCL2這幾個關鍵的基因。


    Background
    Discovery of induced pluripotent stem cells (iPSCs) has shed light on the potential of regenerative medicine, but some evidences reveal iPSCs are similar to oncogenic foci (OF), a form of in vitro produced tumor cells. These evidences indicate that stem cells and cancer cells have intensive relation. Also, recent studies exhibit that the cell cycle play a central roles in development and carcinogenesis. Thus, how to unravel the mechanism of cell cycle progression in stem and cancer cells through genetic-and-epigenetic regulations using big databases is a big issue.

    Results
    The real genetic-and-epigenetic cell cycle networks (GECCNs) of stem cells (embryonic stem cells, ESCs) and cancer cells (HeLa cells) are constructed by applying the system modeling, system identification and big database mining. For convenience of analysis, the real GECCNs are reduced into the core GECCNs of HeLa cells and ESCs by applying principal network projection (PNP). In this study, we investigated carcinogenic mechanisms during cell cycle progression by using common core GECCNs between HeLa cells and ESCs to clarify the potential carcinogenic mechanisms of iPSCs (ESC-like cells). Furthermore, we investigated cervical carcinogenic mechanisms by applying the big mechanism analysis of the specific core GECCN in HeLa cells. By integrating information of drug databases, the result in the specific core GECCNs of HeLa cells could provide the multiple drug for cervical cancer treatment with minimal side effects on the other genes in the core GECCN of ESCs and HeLa cells.

    Conclusions
    The results indicated that the iPSC induction factors, LIN28 and OCT4, dysregulating LET7B and HIF1A, respectively, results in the carcinogenic risk of iPSCs. Additionally, the accumulated genetic mutations and DNA methylation, and dysregulations of MIR29C, MIR34A, MIR98, MIR215 and MIR935 during the G1, S, and G2 phases resulted in aberrant cell proliferation which also resulted from dysregulations of MIR17 during the M phases. Dysregulation of MIR192 led to metastatic cervical cancer during the G1 and G2 phases. Moreover, the accumulated genetic mutations and DNA methylation during the S and G2 phases, dysregulations of MIR34A during the S phases and dysregulations of MIR192 during the G2 phases could trigger ineffectively DNA repair, which could induce apoptosis. Thus, the accumulated genetic mutations and DNA methylation during the G2 and S phases and dysregulation of MIR192 during the G2 phase gave rise anti-apoptosis of cervical cancer cells to prevent the decrease of genetic mutation. We finally proposed the multiple drug, including METHOTREXATE, QUERCETIN and MIMOSINE that affect ARID5B, STK17B and CCL2, respectively, for the treatment of cervical cancer.

    Contents 致謝 i 摘要 ii Abstract iii Contents v List of Figures vii List of Tables vii List of Supplemental materials vii Introduction 1 Results and Discussion 4 2.1 Core network identification in HeLa cells and ESCs 4 2.2 Carcinogenic mechanisms in cellular reprogramming 4 2.3 Carcinogenic mechanisms in cervical cancer by applying big mechanism analysis 6 2.4 Multiple drug design for cervical cancer treatment by integrating cervical carcinogenic mechanisms and drug databases 8 Conclusions 9 Material and Methods 10 4.1.1 Data retrieval and processing in ESCs 10 4.1.2 Data retrieval and processing in HeLa cells 10 4.2 Selection of candidate GECCN through candidate cell cycle genes, candidate TFs and candidate miRNAs by NGS and microarray data 10 4.2.1 Selecting cell cycle genes by cell cycle projection method 10 4.2.2 Construction of candidate GECCN 11 4.3 Construction of the dynamic model in GECCN 12 4.4 Identification of regulatory parameter aim from TFs to their target genes and repressive parameter bin from miRNAs to their target genes 13 4.5 Identification of core GECCNs for carcinogenic mechanisms investigation and multiple drug design via PNP 15 4.6 Drug mining and design through core GECCNs of HeLa cells and ESCs 16

    Reference
    [1] K. Takahashi and S. Yamanaka, "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors," Cell, vol. 126, pp. 663-76, Aug 25 2006.
    [2] K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, et al., "Induction of pluripotent stem cells from adult human fibroblasts by defined factors," Cell, vol. 131, pp. 861-72, Nov 30 2007.
    [3] A. J. Levine and D. Lane, The p53 family : a subject collection from Cold Spring Harbor Perspectives in biology. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2010.
    [4] T. Zhao and Y. Xu, "p53 and stem cells: new developments and new concerns," Trends Cell Biol, vol. 20, pp. 170-5, Mar 2010.
    [5] Q. Li and X. Fu, "Immunogenicity and tumorigenicity of human pluripotent stem cells," OA Stem Cells, vol. 2, p. 2, 2014.
    [6] J. W. Riggs, B. L. Barrilleaux, N. Varlakhanova, K. M. Bush, V. Chan, and P. S. Knoepfler, "Induced pluripotency and oncogenic transformation are related processes," Stem Cells Dev, vol. 22, pp. 37-50, Jan 1 2013.
    [7] M. Ramalho-Santos, S. Yoon, Y. Matsuzaki, R. C. Mulligan, and D. A. Melton, ""Stemness": transcriptional profiling of embryonic and adult stem cells," Science, vol. 298, pp. 597-600, Oct 18 2002.
    [8] D. Zhu, X. Wan, H. Huang, X. Chen, W. Liang, F. Zhao, et al., "Knockdown of Bmi1 inhibits the stemness properties and tumorigenicity of human bladder cancer stem cell-like side population cells," Oncol Rep, vol. 31, pp. 727-36, Feb 2014.
    [9] K. Okita and S. Yamanaka, "Induced pluripotent stem cells: opportunities and challenges," Philos Trans R Soc Lond B Biol Sci, vol. 366, pp. 2198-207, Aug 12 2011.
    [10] J. Cai, M. L. Weiss, and M. S. Rao, "In search of "stemness"," Exp Hematol, vol. 32, pp. 585-98, Jul 2004.
    [11] M. J. Bueno and M. Malumbres, "MicroRNAs and the cell cycle," Biochim Biophys Acta, vol. 1812, pp. 592-601, May 2011.
    [12] A. Morishita and T. Masaki, "miRNA in hepatocellular carcinoma," Hepatol Res, vol. 45, pp. 128-141, Jan 2015.
    [13] J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. Marshall, et al., "Embryonic stem cell lines derived from human blastocysts," Science, vol. 282, pp. 1145-7, Nov 6 1998.
    [14] M. Ivankovic, A. Cukusic, I. Gotic, N. Skrobot, M. Matijasic, D. Polancec, et al., "Telomerase activity in HeLa cervical carcinoma cell line proliferation," Biogerontology, vol. 8, pp. 163-72, Apr 2007.
    [15] G. Sa and T. Das, "Anti cancer effects of curcumin: cycle of life and death," Cell Div, vol. 3, p. 14, 2008.
    [16] Y. Wang, S. Baskerville, A. Shenoy, J. E. Babiarz, L. Baehner, and R. Blelloch, "Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation," Nat Genet, vol. 40, pp. 1478-83, Dec 2008.
    [17] S. W. Oram, X. X. Liu, T. L. Lee, W. Y. Chan, and Y. F. Lau, "TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells," BMC Cancer, vol. 6, p. 154, 2006.
    [18] K. L. Mine, N. Shulzhenko, A. Yambartsev, M. Rochman, G. F. Sanson, M. Lando, et al., "Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer," Nat Commun, vol. 4, p. 1806, 2013.
    [19] P. R. Cohen, "DARPA's Big Mechanism program," Phys Biol, vol. 12, p. 045008, Jul 2015.
    [20] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and S. U. Khan, "The rise of “big data” on cloud computing: Review and open research issues," Information Systems, vol. 47, pp. 98-115, 2015.
    [21] Y. C. Wang and B. S. Chen, "Integrated cellular network of transcription regulations and protein-protein interactions," BMC Syst Biol, vol. 4, p. 20, 2010.
    [22] E. E. Schadt, S. H. Friend, and D. A. Shaywitz, "OPINION A network view of disease and compound screening," Nature Reviews Drug Discovery, vol. 8, pp. 286-295, Apr 2009.
    [23] S. I. Berger and R. Iyengar, "Network analyses in systems pharmacology," Bioinformatics, vol. 25, pp. 2466-2472, Oct 1 2009.
    [24] S. Zhao and R. Iyengar, "Systems pharmacology: network analysis to identify multiscale mechanisms of drug action," Annu Rev Pharmacol Toxicol, vol. 52, pp. 505-21, 2012.
    [25] B. T. Zafonte, J. Hulit, D. F. Amanatullah, C. Albanese, C. Wang, E. Rosen, et al., "Cell-cycle dysregulation in breast cancer: breast cancer therapies targeting the cell cycle," Front Biosci, vol. 5, pp. D938-61, Dec 1 2000.
    [26] H. J. Park, R. H. Costa, L. F. Lau, A. L. Tyner, and P. Raychaudhuri, "Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into S phase," Mol Cell Biol, vol. 28, pp. 5162-71, Sep 2008.
    [27] A. M. Singh, J. Chappell, R. Trost, L. Lin, T. Wang, J. Tang, et al., "Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells," Stem Cell Reports, vol. 1, pp. 532-44, 2013.
    [28] A. Ward, G. Sivakumar, S. Kanjeekal, C. Hamm, B. C. Labute, D. Shum, et al., "The deregulated promoter methylation of the Polo-like kinases as a potential biomarker in hematological malignancies," Leuk Lymphoma, vol. 56, pp. 2123-33, Jul 2015.
    [29] B. Kamaraj, V. Rajendran, R. Sethumadhavan, and R. Purohit, "In-silico screening of cancer associated mutation on PLK1 protein and its structural consequences," J Mol Model, vol. 19, pp. 5587-99, Dec 2013.
    [30] Y. Hsiung, M. Jannatipour, A. Rose, J. McMahon, D. Duncan, and J. L. Nitiss, "Functional expression of human topoisomerase II alpha in yeast: mutations at amino acids 450 or 803 of topoisomerase II alpha result in enzymes that can confer resistance to anti-topoisomerase II agents," Cancer Res, vol. 56, pp. 91-9, Jan 1 1996.
    [31] K. Nishino, M. Toyoda, M. Yamazaki-Inoue, Y. Fukawatase, E. Chikazawa, H. Sakaguchi, et al., "DNA Methylation Dynamics in Human Induced Pluripotent Stem Cells over Time," Plos Genetics, vol. 7, May 2011.
    [32] S. W. Li, X. L. Wu, C. L. Dong, X. Y. Xie, J. F. Wu, and X. Zhang, "The differential expression of OCT4 isoforms in cervical carcinoma," PLoS One, vol. 10, p. e0118033, 2015.
    [33] A. Rybak, H. Fuchs, L. Smirnova, C. Brandt, E. E. Pohl, R. Nitsch, et al., "A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment," Nat Cell Biol, vol. 10, pp. 987-93, Aug 2008.
    [34] P. Y. Bourillot and P. Savatier, "Kruppel-like transcription factors and control of pluripotency," BMC Biol, vol. 8, p. 125, 2010.
    [35] M. Nakagawa, N. Takizawa, M. Narita, T. Ichisaka, and S. Yamanaka, "Promotion of direct reprogramming by transformation-deficient Myc," Proc Natl Acad Sci U S A, vol. 107, pp. 14152-7, Aug 10 2010.
    [36] Y. Xu, X. Wei, M. Wang, R. Zhang, Y. Fu, M. Xing, et al., "Proliferation rate of somatic cells affects reprogramming efficiency," J Biol Chem, vol. 288, pp. 9767-78, Apr 5 2013.
    [37] M. Espinosa, D. Cantu, N. Herrera, C. M. Lopez, J. G. De la Garza, V. Maldonado, et al., "Inhibitors of apoptosis proteins in human cervical cancer," BMC Cancer, vol. 6, p. 45, 2006.
    [38] B. S. Chen, K. W. Tsai, and C. W. Li, "Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme," Evolutionary Bioinformatics, vol. 11, pp. 155-178, 2015.
    [39] S. Sohr and K. Engeland, "RHAMM is differentially expressed in the cell cycle and downregulated by the tumor suppressor p53," Cell Cycle, vol. 7, pp. 3448-3460, Nov 1 2008.
    [40] C. Zhao, G. Sun, S. Li, M. F. Lang, S. Yang, W. Li, et al., "MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling," Proc Natl Acad Sci U S A, vol. 107, pp. 1876-81, Feb 2 2010.
    [41] W. O. Lui, N. Pourmand, B. K. Patterson, and A. Fire, "Patterns of known and novel small RNAs in human cervical cancer," Cancer Res, vol. 67, pp. 6031-43, Jul 1 2007.
    [42] R. Chhabra, "Cervical cancer stem cells: opportunities and challenges," J Cancer Res Clin Oncol, vol. 141, pp. 1889-97, Nov 2015.
    [43] H. Wehbe, R. Henson, F. Y. Meng, J. Mize-Berge, and T. Patel, "Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression," Cancer Research, vol. 66, pp. 10517-10524, Nov 1 2006.
    [44] A. Baba, F. Ohtake, Y. Okuno, K. Yokota, M. Okada, Y. Imai, et al., "PKA-dependent regulation of the histone lysine demethylase complex PHF2-ARID5B," Nat Cell Biol, vol. 13, pp. 668-75, Jun 2011.
    [45] G. Sethi, H. B. Pathak, H. Zhang, Y. Zhou, M. B. Einarson, V. Vathipadiekal, et al., "An RNA Interference Lethality Screen of the Human Druggable Genome to Identify Molecular Vulnerabilities in Epithelial Ovarian Cancer," Plos One, vol. 7, Oct 9 2012.
    [46] Y. Cheng, Z. Yan, Y. Liu, C. Liang, H. Xia, J. Feng, et al., "Analysis of DNA methylation patterns associated with the gastric cancer genome," Oncol Lett, vol. 7, pp. 1021-1026, Apr 2014.
    [47] R. Cinquetti, I. Badi, M. Campione, E. Bortoletto, G. Chiesa, C. Parolini, et al., "Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return," Hum Mutat, vol. 29, pp. 468-74, Apr 2008.
    [48] I. Niittymaki, A. Gylfe, L. Laine, M. Laakso, H. J. Lehtonen, J. Kondelin, et al., "High frequency of TTK mutations in microsatellite-unstable colorectal cancer and evaluation of their effect on spindle assembly checkpoint," Carcinogenesis, vol. 32, pp. 305-11, Mar 2011.
    [49] P. Wangpermtam, S. Sanguansin, S. Petmitr, P. Punyarit, and W. Weerapradist, "Genetic alteration in oral squamous cell carcinoma detected by arbitrarily primed polymerase chain reaction," Asian Pac J Cancer Prev, vol. 12, pp. 2081-5, 2011.
    [50] N. Cancer Genome Atlas Research, C. Kandoth, N. Schultz, A. D. Cherniack, R. Akbani, Y. Liu, et al., "Integrated genomic characterization of endometrial carcinoma," Nature, vol. 497, pp. 67-73, May 2 2013.
    [51] B. Kaina, "DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling," Biochem Pharmacol, vol. 66, pp. 1547-54, Oct 15 2003.
    [52] T. Krude, "Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner," Experimental Cell Research, vol. 247, pp. 148-159, Feb 25 1999.
    [53] R. Vidya Priyadarsini, R. Senthil Murugan, S. Maitreyi, K. Ramalingam, D. Karunagaran, and S. Nagini, "The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-kappaB inhibition," Eur J Pharmacol, vol. 649, pp. 84-91, Dec 15 2010.
    [54] J. Chen, W. Gu, L. Yang, C. Chen, R. Shao, K. Xu, et al., "Nanotechnology in the management of cervical cancer," Rev Med Virol, vol. 25 Suppl 1, pp. 72-83, Mar 2015.
    [55] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. Salzberg, "TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions," Genome Biol, vol. 14, p. R36, 2013.
    [56] C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van Baren, et al., "Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation," Nat Biotechnol, vol. 28, pp. 511-5, May 2010.
    [57] J. Goecks, A. Nekrutenko, J. Taylor, and T. Galaxy, "Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences," Genome Biol, vol. 11, p. R86, 2010.
    [58] D. Blankenberg, G. Von Kuster, N. Coraor, G. Ananda, R. Lazarus, M. Mangan, et al., "Galaxy: a web-based genome analysis tool for experimentalists," Curr Protoc Mol Biol, vol. Chapter 19, pp. Unit 19 10 1-21, Jan 2010.
    [59] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah, et al., "Galaxy: a platform for interactive large-scale genome analysis," Genome Res, vol. 15, pp. 1451-5, Oct 2005.
    [60] V. Matys, O. V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A. Barre-Dirrie, et al., "TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes," Nucleic Acids Res, vol. 34, pp. D108-10, Jan 1 2006.
    [61] V. Agarwal, G. W. Bell, J. W. Nam, and D. P. Bartel, "Predicting effective microRNA target sites in mammalian mRNAs," Elife, vol. 4, 2015.
    [62] S. Sadasivam, S. Duan, and J. A. DeCaprio, "The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression," Genes Dev, vol. 26, pp. 474-89, Mar 1 2012.
    [63] R. Johansson, System modeling and identification. Englewood Cliffs, NJ: Prentice Hall, 1993.
    [64] O. Alter, P. O. Brown, and D. Botstein, "Singular value decomposition for genome-wide expression data processing and modeling," Proc Natl Acad Sci U S A, vol. 97, pp. 10101-6, Aug 29 2000.
    [65] J. Lamb, E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, M. J. Wrobel, et al., "The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease," Science, vol. 313, pp. 1929-35, Sep 29 2006.
    [66] M. Griffith, O. L. Griffith, A. C. Coffman, J. V. Weible, J. F. McMichael, N. C. Spies, et al., "DGIdb: mining the druggable genome," Nat Methods, vol. 10, pp. 1209-10, Dec 2013.
    [67] R. Dubey and N. Saini, "STAT6 silencing up-regulates cholesterol synthesis via miR-197/FOXJ2 axis and induces ER stress-mediated apoptosis in lung cancer cells," Biochim Biophys Acta, vol. 1849, pp. 32-43, Jan 2015.
    [68] C. Q. Wang, V. Krishnan, L. S. Tay, D. W. Chin, C. P. Koh, J. Y. Chooi, et al., "Disruption of Runx1 and Runx3 leads to bone marrow failure and leukemia predisposition due to transcriptional and DNA repair defects," Cell Rep, vol. 8, pp. 767-82, Aug 7 2014.
    [69] R. Kuribara, T. Kinoshita, A. Miyajima, T. Shinjyo, T. Yoshihara, T. Inukai, et al., "Two distinct interleukin-3-mediated signal pathways, Ras-NFIL3 (E4BP4) and Bcl-xL, regulate the survival of murine pro-B lymphocytes," Mol Cell Biol, vol. 19, pp. 2754-62, Apr 1999.
    [70] F. Li, X. J. Li, L. Qiao, F. Shi, W. Liu, Y. Li, et al., "miR-98 suppresses melanoma metastasis through a negative feedback loop with its target gene IL-6," Exp Mol Med, vol. 46, p. e116, 2014.
    [71] M. Keniry, M. M. Pires, S. Mense, C. Lefebvre, B. Gan, K. Justiano, et al., "Survival factor NFIL3 restricts FOXO-induced gene expression in cancer," Genes Dev, vol. 27, pp. 916-27, Apr 15 2013.
    [72] J. E. Oh, H. J. Kim, W. S. Kim, Z. H. Lee, H. M. Ryoo, S. J. Hwang, et al., "PlexinA2 mediates osteoblast differentiation via regulation of Runx2," Journal of Bone and Mineral Research, vol. 27, pp. 552-562, Mar 2012.
    [73] T. Brun and B. R. Gauthier, "A focus on the role of Pax4 in mature pancreatic islet beta-cell expansion and survival in health and disease," Journal of Molecular Endocrinology, vol. 40, pp. 37-45, Jan-Feb 2008.
    [74] Z. Yu, Z. Xu, G. Disante, J. Wright, M. Wang, Y. Li, et al., "miR-17/20 sensitization of breast cancer cells to chemotherapy-induced apoptosis requires Akt1," Oncotarget, vol. 5, pp. 1083-90, Feb 28 2014.
    [75] S. Bhatlekar, S. Addya, M. Salunek, C. R. Orr, S. Surrey, S. McKenzie, et al., "Identification of a developmental gene expression signature, including HOX genes, for the normal human colonic crypt stem cell niche: overexpression of the signature parallels stem cell overpopulation during colon tumorigenesis," Stem Cells Dev, vol. 23, pp. 167-79, Jan 15 2014.
    [76] S. S. Rathod, S. B. Rani, M. Khan, D. Muzumdar, and A. Shiras, "Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways," FEBS Open Bio, vol. 4, pp. 485-95, 2014.
    [77] Y. Fan, X. Song, H. Du, C. Luo, X. Wang, X. Yang, et al., "Down-regulation of miR-29c in human bladder cancer and the inhibition of proliferation in T24 cell via PI3K-AKT pathway," Med Oncol, vol. 31, p. 65, Jul 2014.
    [78] F. Petrocca, R. Visone, M. R. Onelli, M. H. Shah, M. S. Nicoloso, I. de Martino, et al., "E2F1-regulated microRNAs impair TGF beta-dependent cell-cycle arrest and apoptosis in gastric cancer," Cancer Cell, vol. 13, pp. 272-286, Mar 2008.
    [79] W. Wang, X. Wu, and Y. Tian, "Crosstalk of AP4 and TGFbeta receptor signaling in NSCLC," Tumour Biol, vol. 36, pp. 447-52, Jan 2015.
    [80] U. Senanayake, S. Das, P. Vesely, W. Alzoughbi, L. F. Frohlich, P. Chowdhury, et al., "miR-192, miR-194, miR-215, miR-200c and miR-141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms," Carcinogenesis, vol. 33, pp. 1014-21, May 2012.
    [81] W. Z. Stephens, M. Senecal, M. Nguyen, and T. Piotrowski, "Loss of adenomatous polyposis coli (apc) Results in an Expanded Ciliary Marginal Zone in the Zebrafish Eye," Developmental Dynamics, vol. 239, pp. 2066-2077, Jul 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE