簡易檢索 / 詳目顯示

研究生: 鄭元博
Cheng, Yuan-Po
論文名稱: 三維無線隨意網路中保證取得資料之資訊經紀系統
Retrieval-Guaranteed Information Brokerage Schemes in 3D Wireless Ad Hoc Networks
指導教授: 蔡明哲
口試委員: 蔡明哲
高榮駿
趙禧綠
彭文志
張貴雲
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 56
中文關鍵詞: 資訊經紀系統三維無線隨意網路
外文關鍵詞: information brokerage scheme, 3D wireless ad hoc networks
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 資訊經紀系統是用於讓資訊的需求者找到感興趣的資料提供者。在此論文中,我
    將探討資訊經紀系統的相關議題。就我所知,至今為止可用在三維無限隨意網路
    的資訊經紀系統中,取得資訊路徑長、散播資訊路徑長、或取得資訊使用的封包數
    都還是無法被限制住的。在此論文中,我提出了一個全新的資訊經紀系統,簡稱
    為LAIB。在LAIB中,網路被切割成很多的小方塊。在要散布或取得資訊時,資
    訊的需求者和提供者會分別在某些雜湊取得的方塊內尋找或存放資訊。每個資訊
    的需求者或提供者只會使用固定數量的方塊,並且至少有一個方塊能使得資訊需求
    者用比直接到資訊提供者取得資訊更快的速度取得所需的資訊。模擬實驗的結果
    顯示了LAIB在取得資訊路徑長比例、記憶體使用量、封包使用量等方面的效能。
    從模擬實驗中我們也可發現,當網路被切分成特定數量的方塊時,LAIB會有最好
    的效能。


    In this dissertation, I address the problem of information brokerage, where information consumers search for the data acquired by information producers. To the best of my knowledge, there exists no retrieval-guaranteed location-aware information brokerage scheme with a bounded data retrieval path length and bounded replication and retrieval message overhead costs available for use in 3D wireless ad hoc networks to date. In this dissertation, I propose a novel location-aware information brokerage scheme, termed LAIB, where the network area is divided into cube grids, and data are replicated and retrieved in the hashed geographic location in each grid designated by the producer and the consumer, respectively. In LAIB, a polylogarithmic number of grids are designated by the producer and by the consumer, and at least one grid, whose distance from the grid of the consumer is smaller than the distance from the grid of the consumer to the grid of the producer, is designated by both the producer and the consumer. Simulations show that, as the network area is divided into a moderate number of grids, LAIB has good performance in term of retrieval latency stretch while ensuring moderate replication memory, replication message, and retrieval message overhead costs.

    Abstract ii Contents iii List of Figures v List of Tables vii 1 Introduction 1 1.1 Information Brokerage Schemes in 2D Wireless Ad-hoc Networks . . . 2 1.2 Challenges in 3D Wireless Ad-hoc Networks . . . . . . . . . . . . . . 2 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Related Works 6 2.1 Hash-based Information Brokerage Scheme . . . . . . . . . . . . . . . 6 2.2 Double Ruling Information Brokerage Scheme . . . . . . . . . . . . . 7 2.3 Double Ruling Information Brokerage Scheme . . . . . . . . . . . . . 9 3 Location Aware Information Brokerage Scheme 11 3.1 The Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 An LAIB Example . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 The Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 LAIB Retrieval Guarantee . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Grid-Distance Sensitivity . . . . . . . . . . . . . . . . . . . . . 18 3.2.3 Expected Message Overhead . . . . . . . . . . . . . . . . . . . 21 3.2.4 Performance of LAIB . . . . . . . . . . . . . . . . . . . . . . . 28 4 LAIB in 3D Wireless Ad Hoc Networks 30 4.1 The Dual Graph and GRG . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Locating Holes in the Dual Graph . . . . . . . . . . . . . . . . . . . . 32 4.3 The Implementation of LAIB in 3D Wireless Ad-hoc Networks . . . . 35 4.3.1 An LAIB Example in 3D Wireless Ad Hoc Networks . . . . . 36 4.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4.1 Results in Networks without Voids . . . . . . . . . . . . . . . 39 4.4.2 Results in Networks with Voids . . . . . . . . . . . . . . . . . 42 5 Conclusions 47 Bibliography 49

    [1] A. Abdallah, T. Fevens, and J. Opatrny. Power-aware 3d position-based routing
    algorithms for ad hoc networks. In IEEE ICC, 2007.
    [2] U. Acer, S. Kalyanaraman, and A. Abouzeid. Weak state routing for largescale
    dynamic networks. IEEE/ACM Transactions on Networking, 18:1450–
    1463, 2010.
    [3] H. Ammari and S. Das. A study of k-coverage and measures of connectivity
    in 3d wireless sensor networks. IEEE Transactions on Computers, 59:243–257,
    2010.
    [4] I. Aydin and C.-C. Shen. Facilitating match-making service in ad hoc and sensor
    networks using pseudo quorum. In IEEE ICCCN, 2002.
    [5] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guarantee
    delivery in ad hoc networks. ACM Wireless Networks, 7:609–616, 2001.
    [6] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Routing with guaranteed
    delivery in ad hoc wireless networks. ACM Wireless Networks, 7:609–616, 2001.
    49
    [7] J. Bruck, J. Gao, and A. A. Jiang. MAP: Medial axis based geometric routing
    in sensor networks. In IEEE MOBICOM, 2005.
    [8] A. Caruso, S. Chessa, S. De, and A. Urpi. GPS free coordinate assignment and
    routing in wireless sensor networks. In IEEE INFOCOM, 2005.
    [9] M. B. Chena, S. J. Gortlerb, C. Gotsmana, and C. Wormserc. Distributed computation
    of virtual coordinates for greedy routing in sensor networks. Discrete
    Applied Mathematics, 159:544–560, 2011.
    [10] W. Cheng, A. Y. Teymorian, L. Ma, X. Cheng, X. Lu, and Z. Lu. Underwater
    localization in sparse 3d acoustic sensor networks. In IEEE INFOCOM, 2009.
    [11] A. Cvetkovski and M. Crovella. Hyperbolic embedding and routing for dynamic
    graphs. In IEEE INFOCOM, 2009.
    [12] D. Eppstein and M. T. Goodrich. Succinct greedy geometric routing using hyperbolic
    geometry. IEEE Transactions on Computers, 60:1571–1580, 2010.
    [13] Q. Fang, J. Gao, and L. J. Guibas. Locating and bypassing routing holes in
    sensor networks. In IEEE INFOCOM, 2004.
    [14] Q. Fang, J. Gao, L. J. Guibas, V. de Silva, and L. Zhang. GLIDER: Gradient
    landmark-based distributed routing for sensor networks. In IEEE INFOCOM,
    2005.
    [15] R. Flury and R. Wattenhofer. Randomized 3d geographic routing. In IEEE
    INFOCOM, 2008.
    50
    [16] H. Frey and I. Stojmenovic. On delivery guarantees of face and combined greedyface
    routing in ad hoc and sensor networks. In ACM MOBICOM, 2006.
    [17] H. Frey and I. Stojmenovic. On delivery guarantees and worst-case forwarding
    bounds of elementary face routing components in ad hoc and sensor networks.
    IEEE Transactions on Computers, 59:1224–1239, 2010.
    [18] K. R. Gabriel and R. R. Sokal. A new statistical approach to grographic variation
    analysis. Systematic Zoology, 18:259–287, 1969.
    [19] S. Ishihara and T. Suda. Replica arrangement scheme for location dependent
    information on sensor networks with unpredictable query frequency. In IEEE
    ICC, 2009.
    [20] R. Jiang, X. Ban, M. Goswami, W. Zeng, J. Gao, and X. Gu. Exploration of
    path space using sensor network geometry. In IPSN, 2011.
    [21] B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless
    networks. In ACM MobiCom, 2000.
    [22] Y.-J. Kim, R. Govindan, B. Karp, and S. Shenker. Geographic routing made
    practical. In NSDI, 2005.
    [23] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks.
    In CCCG, 1999.
    [24] F. Kuhn, R.Wattenhofer, Y. Zhang, and A. Zollinger. Geometric ad-hoc routing:
    Of theory and practice. In ACM PODC, 2003.
    51
    [25] B. Leong, S. Mitra, and B. Liskov. Path vector face routing: Geographic routing
    with local face information. In IEEE ICNP, 2005.
    [26] J. Li, J. Jannotti, D. S. J. D. Couto, D. R. Karger, and R. Morris. A scalable
    location service for geographic ad hoc routing. In ACM MOBICOM, 2000.
    [27] X. Li, N. Mitton, I. Simplot-Ryl, and D. Simplot-Ryl. A novel family of geometric
    planar graphs for wireless ad hoc networks. In IEEE INFOCOM, 2011.
    [28] X. Li, N. Santoro, and I. Stojmenovic. Localized distance-sensitive service discovery
    in wireless sensor and actor networks. IEEE Transactions on Computers,
    58:1275–1288, 2009.
    [29] X.-Y. Li. Approximate MST for UDG locally. In COCOON, 2003.
    [30] X.-Y. Li, I. Stojmenovic, and Y. Wang. Partial Delaunay triangulation and
    degree limited localized Bluetooth scatternet formation. IEEE Transactions on
    Parallel and Distributed Systems, 15:350–361, 2004.
    [31] Y. Li and J. Ren. Source-location privacy through dynamic routing in wireless
    sensor networks. In IEEE INFOCOM, 2010.
    [32] C. H. Lin, B. H. Liu, H. Y. Yang, C. Y. Kao, and M. J. Tsai. Virtual-coordinatebased
    delivery-guaranteed routing protocol in wireless sensor networks with unidirectional
    links. In IEEE INFOCOM, pages 351–355, 2008.
    [33] C.-H. Lin, S.-A. Yuan, S.-W. Chiu, and M.-J. Tsai. Progressface: An algorithm
    to improve routing efficiency of GPSR-like routing protocols in wireless ad hoc
    networks. IEEE Transactions on Computers, 59:822–834, 2010.
    52
    [34] C. Liu and J. Wu. Efficient geometric routing in three dimensional ad hoc
    networks. In IEEE INFOCOM Mini-Symposium, 2009.
    [35] C. Liu and J. Wu. Virtual-force-based geometric routing protocol in MANETs.
    IEEE Transactions on Parallel and Distributed Systems, 99:433–445, 2009.
    [36] W.-J. Liu and K.-T. Feng. Three-dimensional greedy anti-void routing for wireless
    sensor networks. IEEE Transactions on Wireless Communications, 12:5796–
    5800, 2009.
    [37] H. Luo, F. Ye, J. Cheng, S. Lu, and L. Zhang. A two-tier data dissemination
    model for large-scale wireless sensor networks. In ACM MOBICOM, 2002.
    [38] J. Luo and J.-P. Hubaux. Joint sink mobility and routing to maximize the lifetime
    of wireless sensor networks: The case of constrained mobility. IEEE/ACM
    Transactions on Networking, 18:871–884, 2010.
    [39] H. Ma, X. Zhang, and A. Ming. A coverage-enhancing method for 3d directional
    sensor networks. In IEEE INFOCOM, 2009.
    [40] H. P. Manning. Geometry of Four Dimensions. The Macmillan Company, 1914.
    [41] Y. Mao, F. Wang, L. Qiu, S. Lam, and J. Smith. S4: Small state and small
    stretch compact routing protocol for large static wireless network. IEEE/ACM
    Transactions on Networking, 18:761–774, 2010.
    [42] M. Naghshvar and T. Javidi. Opportunistic routing with congestion diversity in
    wireless multi-hop networks. In IEEE INFOCOM, 2010.
    53
    [43] A. Nguyen, N. Milosavljevic, Q. Fang, J. Gao, and L. J. Guibas. Landmark
    selection and greedy landmark-descent routing for sensor networks. In IEEE
    INFOCOM, 2007.
    [44] F. Papadopoulos, D. Krioukov, M. Boguna, and A. Vahdat. Greedy forwarding
    in dynamic scale-free networks embedded in hyperbolic metric spaces. In IEEE
    INFOCOM, 2010.
    [45] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.
    GHT: A geographic hash table for data-centric storage. In ACM WSNA, 2002.
    [46] V. Ravelomanana. Extremal properties of three-dimensional sensor networks
    with applications. IEEE Transactions on Mobile Computing, 3:246–257, 2004.
    [47] S. Ruhrup, H. Kalosha, A. Nayak, and I. Stojmenovic. Message-efficient beaconless
    georouting with guaranteed delivery in wireless sensor, ad hoc, and actuator
    networks. IEEE/ACM Transactions on Networking, 18:95–108, 2010.
    [48] R. Sarkar, X. Yin, J. Gao, F. Luo, and X. D. Gu. Greedy routing with guaranteed
    delivery using Ricci flows. In IPSN, 2009.
    [49] R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage in
    sensor networks. IEEE/ACM Transactions on Networking, 17:1902–1915, 2009.
    [50] I. Stojmenovic, D. Liu, and X. Jia. A scalable quorum-based location service in
    ad hoc and sensor networks. International Journal of Communication Networks
    and Distributed Systems, 1:71–94, 2008.
    54
    [51] S. Subramanian, S. Shakkottai, and P. Gupta. On optimal geographic routing
    in wireless networks with holes and non-uniform traffic. In IEEE INFOCOM,
    2007.
    [52] S. Subramanian, S. Shakkottai, and P. Gupta. Optimal geographic routing for
    wireless networks with near-arbitrary holes and traffic. In IEEE INFOCOM,
    2008.
    [53] K. J. Supowit. The relative neighborhood graph, with an application to minimum
    spanning trees. Journal of the ACM, 30:428–448, 1983.
    [54] M.-J. Tsai, F.-R. Wang, H.-Y. Yang, and Y.-P. Cheng. VirtualFace: An algorithm
    to guarantee packet delivery of virtual-coordinate-based routing protocols
    in wireless sensor networks. In IEEE INFOCOM, pages 1728–1736, 2009.
    [55] M.-J. Tsai, H.-Y. Yang, and W.-Q. Huang. Axis-based virtual coordinate assignment
    protocol and delivery-guaranteed routing protocol in wireless sensor
    networks. In IEEE INFOCOM, 2007.
    [56] M.-J. Tsai, H.-Y. Yang, B.-H. Liu, and W.-Q. Huang. Virtual-coordinate-based
    delivery-guaranteed routing protocols in wireless sensor networks. IEEE/ACM
    Transactions on Networking, 17:1228–1241, 2009.
    [57] E. W. Weisstein. Great sphere. MathWorld{A Wolfram Web Resource,
    http://mathworld.wolfram.com/GreatSphere.html, 2011.
    [58] X. Xiang, X. Wang, and Y. Yang. Stateless multicasting in mobile ad hoc
    networks. IEEE Transactions on Computers, 59:1076–1090, 2010.
    55
    [59] A. Yao. On constructing minimum spanning trees in k-dimensional spaces and
    related problems. SIAM Journal on Computing, 11:721–736, 1982.
    [60] X. Yu, X. Ban, W. Zeng, R. Sarkar, D. Gu, and J. Gao. Spherical representation
    and polyhedron routing for load balancing in wireless sensor networks. In IEEE
    INFOCOM, 2011.
    [61] W. Zeng, R. Sarkar, F. Luo, X. Gu, and J. Gao. Resilient routing for sensor
    networks using hyperbolic embedding of universal covering space. In IEEE
    INFOCOM, 2010.
    [62] C. Zhang, X. Bai, J. Teng, D. Xuan, and W. Jia. Constructing low-connectivity
    and full-coverage three dimensional sensor networks. IEEE Journal on Selected
    Areas in Communications, 28:984–993, 2010.
    [63] F. Zhang, H. Li, A. A. Jiang, J. Chen, and P. Luo. Face tracing based geographic
    routing in nonplanar wireless networks. In IEEE INFOCOM, 2007.
    [64] R. Zhang, H. Zhao, and M. A. Labrador. A grid-based sink location service for
    large-scale wireless sensor networks. In ACM IWCMC, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE