研究生: |
葉哲寧 Yeh, Che-Ning |
---|---|
論文名稱: |
自組裝硫化鉍奈米粒子於非晶矽奈米線做為光伏元件之吸收層 Self-assembled Bi2S3 Nanoparticles on Amorphous Silicon Nanowires as an Absorption Layer for Photovoltaics |
指導教授: |
游萃蓉
Yew, Tri-Rung |
口試委員: |
李紫原
林俊榮 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 非晶矽奈米線 、硫化鉍奈米粒子 、太陽能電池 、吸收層 、奈米結構 |
外文關鍵詞: | amorphous silicon nanowires, Bi2S3 nanoparticles, solar cell, absorption layer, nanostructure |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶液製程製備非晶矽奈米線,以及合成硫化鉍奈米粒子 (Bi2S3 NPs),來製備一種由零維奈米粒子與一維矽奈米線所組成的新型複合奈米結構 (hybrid nanostructure)。此結構利用一維奈米線提供大的有效面積及低反射率,與零維硫化鉍奈米粒子進一步幫助吸光,達到提升太陽能電池效率的目標。
本研究嘗試調整不同銀催化劑沉積溶液濃度以及沉積時間,製備出以濕式化學蝕刻法形成之非晶矽奈米線,此蝕刻法不需使用真空系統,也不需另外定義催化劑沉積位置,為一快速、簡單且適合大面積製作之方法。此外,本研究亦透過不同反應溶液濃度、基板表面處理、反應溫度以及添加分散劑與否等因素之調變,將硫化鉍奈米粒子自組裝於非晶矽奈米線。最後,分別以非晶矽以及單晶矽為基板,利用此複合奈米結構做為吸收層,製作太陽能電池。
分析本研究製備之吸收層的光學特性,在奈米線部分,所有量測波段 (400 -1300 nm) 的吸收率皆較原本之薄膜基板有顯著提升;將硫化鉍奈米粒子合成於奈米線上形成Bi2S3 NPs / a-Si:H NWs與Bi2S3 NPs / c-Si NWs複合奈米結構後,吸收率進一步上升,且在長波長範圍內明顯增加,顯示硫化鉍奈米粒子為一相當具有潛力的光吸收媒介 (light harvesting agent),能有效幫助吸光,達到預期之太陽光光譜全波段吸收之目的。
在本研究中以此複合奈米結構組成太陽能電池,顯示此結構應用於單晶矽以及非晶矽電池之吸收層的可能性;以硫化鉍奈米粒子自組裝於單晶矽奈米線組成之電池,電性表現為Voc = 0.421 V、Jsc = 9.196 mA/cm2、FF = 20.7 %、η = 0.802 %,其中短路電流密度較僅由單晶矽奈米線組成之太陽能電池有顯著提升 (由1.163 mA/cm2提升為9.196 mA/cm2),能量轉換效率由0.044 % 增加至0.802 %。由上述結果得知,此複合奈米結構具有進一步提升太陽能電池之效率的可能性。
A hybrid nanostructure with self-assembled 0-D Bi2S3 nanoparticles on 1-D a-Si:H nanowires was developed as a new absorption material in this work. It has been demonstrated the feasibility of using a metal-induced chemical etching process, which is simple, rapid, low-temperature and suitable for large-area production, to fabricate a-Si:H nanowires. The Bi2S3 NPs were self-assembled on the a-Si:H NWs as well as c-Si NWs to test the feasibility for photovoltaic applications.
The UV-Vis results showed that the absorption of a-Si:H nanowires was greatly enhanced attributed to superior antireflection properties over a large range of wavelengths. Bi2S3 NPs were successfully synthesized on the surface of as-prepared a-Si:H nanowires and characterized, showing that it could serve as an efficient light harvesting agent. The combination of Bi2S3 NPs and a-Si:H NWs as well as Bi2S3 NPs and c-Si NWs provided the possibility to realize the desired wide-band spectrum of sunlight absorption.
As this hybrid system was applied to a-Si:H and c-Si, the superior antireflection properties of NWs along with the integration of Bi2S3 NPs as light harvesting agents yielded a substantial enhancement in the optical absorption. For the solar cell based on Bi2S3 NPs / c-Si NWs, the result showed substantial enhancement in the short-circuit current density and power conversion efficiency compared to that of the solar cell based on only c-Si NWs (Jsc = 1.163 mA/cm2, PCE = 0.044 % for c-Si NWs and Jsc = 9.196 mA/cm2, PCE = 0.802 % for Bi2S3-NPs / c-Si NWs). Thus, the hybrid nanostructures presented in this study provided the feasibility for their future photovoltaic applications.
[1] BP Statistical Review of World Energy June 2011, 2011, 1-38.
[2] 楊昌中,能源領域中的奈米科技研究,工業研究院 能源與環境研究所,2006.
[3] John Perlin, “Powering the Planet.”, Nature, 2000, 403, 363-364.
[4] Energy Information Administration, “2016 Levelized Cost of New Generation Resources from the Annual Energy Outlook 2010.”, International Energy Outlook 2010 – Highlights, 2010.
Energy Information Administration, International Energy Outlook 2011.
[5] M. A. Green, “Third Generation Photovoltaics: Ultra-high Conversion Efficiency at Low Cost.”, Prog. Photovolt: Res. Appl., 2001, 9, 123-135.
[6] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar Cell Efficiency Tables (version 39).”, Prog. Photovolt: Res. Appl., 2012, 20, 12-20.
[7] G. F. Brown and J. Wu, “Third Generation Photovoltaics.”, Laser & Photon. Rev., 2009, 3, 294-405.
[8] N. S. Lewis, “Toward Cost-Effective Solar Energy Use.”, Science, 2007, 315, 798-801.
[9] G. W. Crabtree and N. S. Lewis, “Solar Energy Conversion.”, Physics Today, 2007, 37-42.
[10] D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power.”, J. Appl. Phys., 1954, 25, 676-677.
[11] J. Zhao, A. Wang and M. A. Green, “24.5% Efficiency Silicon PERT cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates.”, Progress in Photovoltaics, 1999, 7, 471-474.
[12] J. Zhao, A. Wang, M. A. Green and F. Ferrazza, “Novel 19.8% Efficient ”Honeycomb” Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells.”, Applied Physics Letters, 1998, 73, 1991-1993.
[13] O. Schultz, S. W. Glunz, and G. P. Willeke, “Multicrystalline Sili-con Solar Cells Exceeding 20% Efficiency.”, Prog. Photovolt: Res. Appl., 2004, 12, 553-558.
[14] J. H. Petermann, D. Zielke, J. Schmidt, F. Rojas EG, and R. Brendel, “19 %-efficient and 43 m-thick crystalline Si solar cell from layer transfer using porous silicon.”, Progress In Photovoltaics 2012; published online DOI: 10.1002/pip. 1129.
[15] M. J. Keevers, T. L. Young, U. Schubert, and M. A. Green, “10% efficient CSG Minimodules.”, 22nd European Photovoltaic Solar Energy Conference, Milan, September 2007. Progress In Photovoltaics: Research And Applications, 2008, 16, 235-239.
[16] http://www.greentechmedia.com/articles/read/stealthyalta-devices-
next-gen-pv-challenging-the-status-quo/
[17] R. Venkatasubramanian, B. C. O‟Quinn, J. S. Hills, P. R. Sharps, M. J. Timmons, J. A. Hutchby, H. Field, A. Ahrenkiel, and B. Keyes, “18.2% (AM1.5) Efficient GaAs Solar Cell on Optical-grade Polycrystalline Ge Substrate.”, Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, May 1997, 31-36.
[18] C. J. Keavney, V. E. Haven, and S. M. Vernon, “Emitter Structures in MOCVD InP Solar Cells.”, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990, 141-144.
[19] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9 %-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2 % fill factor.”
[20] http://www.q-cells.com
[21] X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, A. Duda, T. A. Gessert , S. Asher,D. H. Levi, and P. Sheldon, “16.5%-efficient CdS/CdTe Polycrystalline Thin-film Solar Cell.”, Proceedings of 17th European Photovoltaic Solar Energy Conference, Munich, 22–26 October 2001, 995-1000.
[22] S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Spitznagel, J. Steinhauser, L. Castens, and Y. Djeridane, “High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor.”, 24th European Photovoltaic Solar Energy Conference, Hamburg, September 2009.
[23] K. Yamamoto, M. Toshimi, T. Suzuki, Y. Tawada, T. Okamoto, and A. Nakajima, “Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature.”, MRS Spring Meeting, San Francisco, April 1998.
[24] N. Koide, R. Yamanaka, and H. Katayama, “Recent advances of dye-sensitized solar cells and integrated modules at SHARP.”, MRS Proceedings 2009, 1211, 1211-R12-02.
[25] M. Morooka, R. Ogura, M. Orihashi, and M. Takenaka, “Development of dye-sensitized solar cells for practical applications.”, Electrochemistry, 2009, 77, 960-965.
[26] R. Service, “Outlook brightens for plastic solar cells.”, Science, 2011, 332, 293.
[27] K. Miyake, Y. Uetani, T. Seike, T. Kato, K. Oya, K. Yoshimura, and T. Ohnishi, “Development of next generation organic solar cell.” R&D Report, “SUMITOMO KAGAKU”, 2010, 2010-1.
[28] A. W. Bett, F. Dimroth, W. Guter, R. Hoheisen, E. Oliva, S. P. Philipps, J. Schöne, G. Siefer, M. Steiner, A. Wekkeli, E. Welser, M. Meusel, W. Köstler, and G. Strobl, “Highest efficiency mul-ti-junction solar cell for terrestrial and space applications.”, Pro-ceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009, 1-6.
[29] A. Banerjee, T. Su, D. Beglau, G. Pietka, F. Liu, G. DeMaggio, S. Almutawalli, B. Yan, G. Yue, J. Yang, and S. Guha, “High efficiency, multi-junction nc-Si:h based solar cells at high deposition rate.”, 37th IEEE PVSC, Seattle, June 2011.
[30] http://www.kaneka-solar.com
[31] M. Yoshimi, T. Sasaki, T. Sawada, T. Suezaki, T. Meguro, T. Matsuda, K. Santo, K. Wadano, M. Ichikawa, A. Nakajima, and K. Yamamoto, “High efficiency thin film silicon hybrid solar cell module on Im2-class large area substrate.”, Conference Record, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, May 2003, 1566-1569.
[32] M. A. Green, Solar Cells, 1982, 62-84
[33] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2003, 61-111
[34] G. Conibeer, M. Green, R. Corkish, Y. Cho, E. C. Cho, C. W. Jiang, T. Fangsuwannarak, E. Pink, Y. Dd. Huang, T. Puzzer, T. Trupke, B. Richards and A. Shalav, K. L. Lin, “Silicon nanostructures for third generation photovoltaic solar cells.”, Thin Solid Films, 2006, 511-512, 654-662.
[35] G. Conibeer, “Third-generation Photovoltaics.”, Materialstoday, 2007, 10, 42-50.
[36] A. Sha, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells.”, Science, 1999, 285, 692-698.
[37] N. Nijegorodov and P. V. C. Luhanga, “Air Mass Analytical and Empirical Treatment; an Improved Formula for Air Mass.”, Renewable Energy, 1996, 7, 57-65.
[38] J, Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays.”, Nano Lett., 2009, 9, 279-282.
[39] M. Tang, S. T. Chang, T. Z. Chen, Z. W. Pei, W. C. Wang and J. Huang, “Simulation of nanorod structures for an amorphous sili-con-based solar cell.”, Thin Solid Films, 2010, 518, S259-S261.
[40] Y. H. Kuang, K. H. M. van der Werf, Z. S. Houweling and R. E. I. Schropp, “Nanorod solar cell with an ultrathin a-Si:H absorber layer.”, Appl. Phys. Lett., 2011, 98, 113111-1.
[41] J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning.”, Nano Lett., 2010, 10, 1979-1984.
[42] K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee and J. Zhu, “Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications.”, small, 2005, 1, 1062-1067.
[43] A. J. Nozik, “Quantum Dot Solar Cells.”, Physica E, 2002, 14, 115-120.
[44] W. Shockley and H.J. Queisser, “Detailed Balance Limit of Effi-ciency of p-n Junction Solar Cells.”, J. Appl. Phys., 1961, 32, 510.
[45] A.P. Alivisatos, “Perspectives on the Physical Chemistry of Semi-conductor Nanocrystals”, J. Phys. Chem., 1996, 100, 13226-13239.
[46] W.W. Yu and X. Peng, “Formation of High-Quality CdS and Other Ⅱ-Ⅵ Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers.”, Angew. Chem. Int. Ed., 2002, 41, 2368.
[47] S. Neeleshwar, C. L. Chen, C. B. Tsai, and Y. Y. Chen, “Size-dependent Properties of CdSe Quantum Dots.”, Physical Review B, 2005, 71, 201307-1.
[48] O. I. Mic´ic´, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas, and A. J. Nozik, “Size-Dependent Spectroscopy of InP Quantum Dots.”, J. Phys. Chem. B., 1997, 101, 4904-4912.
[49] L. M. Peter, K. G. U. Wijayantha, D. J. Riley, and J. P. Waggett, “Band-Edge Tuning in Self-Assembled Layers of Bi¬2S3 Nanoparti-cles Used To Photosensitize Nanocrystalline TiO2.”, J. Phys. Chem. B., 2003, 107, 8378-8381.
[50] PVCDROM, http://www.pveducation.org/pvcdrom.
[51] R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Klimov, “Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers.”, Nano Lett., 2008, 6, 424-429.
[52] R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion.”, Phys. Rev. Lett., 2004, 92, 186601-1.
[53] R. J. Ellingson, M. C. Beard, J. C. Johnson, P. R. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots.”, Nano Lett., 2005, 5, 865-871.
[54] R. D. Schaller, M. A. Petruska, and V. I. Klimova, “Effect of Elec-tronic Structure on Carrier Multiplication Efficiency: Comparative Study of PbSe and CdSe Nanocrystals.”, Appl. Phys. Lett., 2005, 87, 253102-1.
[55] J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. R. Yu, O. I. Mic´ic´, R. J. Ellingson, and A. J. Nozik, “PbTe Colloidal Nanocrystals: Synthesis, Characterization, and Multiple Exciton Generation.”, J. Am. Chem. Soc., 2008, 128, 3241-3247.
[56] J. J. H. Pijpers, E. Hendry, M. T. W. Milder, R. Fanciulli, J. Savolainen, J. L. Herek, D. Vanmaekelbergh, S. Ruhman, D. Mocatta, D. Oron, A. Aharoni, U. Banin, and M. Bonn, “Carrier Multiplication and its Reduction by Photodoping in Colloidal InAs Quantum Dots.”, J. Phys. Chem. C, 2007, 111, 4146-4152.
[57] M. C. Beard, K. P. Knutsen, P. R. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple Exciton Generation in Colloidal Silicon Nanocrystals.”, Nano Lett., 2007, 7, 2506-2512.
[58] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, V. P. S. Perera, and G. M. L. P. Aponsu, “Nanoporous n-TiO2/Selenium/p-CuCNS Photovoltaic cell.”, J. Phys. D: Appl. Phys., 1998, 31, 2326-2330.
[59] C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, “CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunctions.”, Adv. Mater., 2005, 17, 1512-1515.
[60] R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide- Bandgap Semiconductors.”, J. Phys. Chem., 1994, 98, 3183-3188.
[61] R. Vogela, K. Pohla, and H. Wellera, “Sensitization of Highly Porous, Polycrystalline TiO2 Electrodes by Quantum Sized CdS.”, Chem. Phys. Lett., 1990, 174, 241-246.
[62] D. Liu and P. V. Kamat, “Photoelectrochemical Behavior of Thin CdSe and Coupled TiO2 CdSe Semiconductor-Films.”, J. Phys. Chem., 1993, 97, 10769-10773.
[63] I. Robert, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films.”, J. Phys. Chem., 2006, 128, 2385-2393.
[64] O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Ruhle, D. Cahen, and G. Hodes, “Chemical Bath Deposited CdS/CdSe-Sensitized Porous TiO2 Solar Cells.”, J. Photochem. Photobiol. A, 2006, 181, 306-313.
[65] A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots.”, Langmuir, 1998, 14, 3153-3156.
[66] P. R. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots.”, J. Phys. Chem. B, 2006, 110, 25451-25454.
[67] K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices.”, Nano Lett., 2007, 7, 1793-1798.
[68] Y. L. Lee and Y. S. Lo, “Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe.”, Adv. Funct. Mater., 2009, 19, 604-609.
[69] W. U. Hutuh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells.”, Science, 2002, 295, 2425-2427.
[70] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Effi-ciency of p-n Junction Solar Cells.”, J. Appl. Phys., 1961, 32, 510-519.
[71] K. T. Kuo, D. M. Liu, S. Y. Chen and C. C. Lin, “Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency.”, J. Mater. Chem., 2009, 19, 6780-6788.
[72] B. Güzeltürk, E. Mutlugün, X. D. Wang, K. L. Pey and H. V. Demir, “Photovoltaic nanopillar radial junction diode architecture enhanced by integrating semiconductor quantum dot nanocrystals as light harvesters.”, Appl. Phys. Lett., 2010, 97, 093111.
[73] M. S. Seol, H. J. Kim, Y. J. Tak and K. J. Yong, “Novel nanowire array based highly efficient quantum dot sensitized solar cell.”, Chem. Commun., 2010, 46, 5521-5523.
[74] W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen and L. M. Peng, “CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes.”, J. Am. Chem. Soc., 2008, 130, 1124-1125.
[75] K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles.”, Adv. Funct. Mater., 2006, 16, 387-394.
[76] I. Chan and A. Nathan, “Dry Etch Process Optimization for Small-area a-Si:H Vertical Thin Film Transistor.”, J. Vac. Sci. Technol. A, 2002, 20, 962-965.
[77] M. Otobe, M. Kimura, and S. Oda, “Selective Etching of Hydrogenated Amorphous Silicon by Hydrogen Plasma.”, Jpn. J. Appl. Phys., 1994, 33, 4442-4445.
[78] D. J. Riley, J. P. Waggetta, and K. G. U. Wijayantha, “Colloidal Bismuth Sulfide Nanoparticles: a Photoelectrochemical Study of the Relationship between Bandgap and Particle Size.”, J. Mater. Chem., 2004, 14, 704-708.
[79] S. Tsunekawa, T. Fukuda and A. Kasuya, “Blue shift in ultraviolet absorption spectra of monodisperse CeO2x nanoparticles.”, J. Appl. Phys., 2000, 87, 1318-1321.
[80] A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller and A. D. Hunter, “Photoelectrochemical and Photoresponsive Properties of Bi2S3 Nanotube and Nanoparticle Thin Films.”, Chem. Mater., 2010, 22, 5084-5092.