簡易檢索 / 詳目顯示

研究生: 葉哲寧
Yeh, Che-Ning
論文名稱: 自組裝硫化鉍奈米粒子於非晶矽奈米線做為光伏元件之吸收層
Self-assembled Bi2S3 Nanoparticles on Amorphous Silicon Nanowires as an Absorption Layer for Photovoltaics
指導教授: 游萃蓉
Yew, Tri-Rung
口試委員: 李紫原
林俊榮
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 113
中文關鍵詞: 非晶矽奈米線硫化鉍奈米粒子太陽能電池吸收層奈米結構
外文關鍵詞: amorphous silicon nanowires, Bi2S3 nanoparticles, solar cell, absorption layer, nanostructure
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用溶液製程製備非晶矽奈米線,以及合成硫化鉍奈米粒子 (Bi2S3 NPs),來製備一種由零維奈米粒子與一維矽奈米線所組成的新型複合奈米結構 (hybrid nanostructure)。此結構利用一維奈米線提供大的有效面積及低反射率,與零維硫化鉍奈米粒子進一步幫助吸光,達到提升太陽能電池效率的目標。
      本研究嘗試調整不同銀催化劑沉積溶液濃度以及沉積時間,製備出以濕式化學蝕刻法形成之非晶矽奈米線,此蝕刻法不需使用真空系統,也不需另外定義催化劑沉積位置,為一快速、簡單且適合大面積製作之方法。此外,本研究亦透過不同反應溶液濃度、基板表面處理、反應溫度以及添加分散劑與否等因素之調變,將硫化鉍奈米粒子自組裝於非晶矽奈米線。最後,分別以非晶矽以及單晶矽為基板,利用此複合奈米結構做為吸收層,製作太陽能電池。
      分析本研究製備之吸收層的光學特性,在奈米線部分,所有量測波段 (400 -1300 nm) 的吸收率皆較原本之薄膜基板有顯著提升;將硫化鉍奈米粒子合成於奈米線上形成Bi2S3 NPs / a-Si:H NWs與Bi2S3 NPs / c-Si NWs複合奈米結構後,吸收率進一步上升,且在長波長範圍內明顯增加,顯示硫化鉍奈米粒子為一相當具有潛力的光吸收媒介 (light harvesting agent),能有效幫助吸光,達到預期之太陽光光譜全波段吸收之目的。
      在本研究中以此複合奈米結構組成太陽能電池,顯示此結構應用於單晶矽以及非晶矽電池之吸收層的可能性;以硫化鉍奈米粒子自組裝於單晶矽奈米線組成之電池,電性表現為Voc = 0.421 V、Jsc = 9.196 mA/cm2、FF = 20.7 %、η = 0.802 %,其中短路電流密度較僅由單晶矽奈米線組成之太陽能電池有顯著提升 (由1.163 mA/cm2提升為9.196 mA/cm2),能量轉換效率由0.044 % 增加至0.802 %。由上述結果得知,此複合奈米結構具有進一步提升太陽能電池之效率的可能性。


    A hybrid nanostructure with self-assembled 0-D Bi2S3 nanoparticles on 1-D a-Si:H nanowires was developed as a new absorption material in this work. It has been demonstrated the feasibility of using a metal-induced chemical etching process, which is simple, rapid, low-temperature and suitable for large-area production, to fabricate a-Si:H nanowires. The Bi2S3 NPs were self-assembled on the a-Si:H NWs as well as c-Si NWs to test the feasibility for photovoltaic applications.
    The UV-Vis results showed that the absorption of a-Si:H nanowires was greatly enhanced attributed to superior antireflection properties over a large range of wavelengths. Bi2S3 NPs were successfully synthesized on the surface of as-prepared a-Si:H nanowires and characterized, showing that it could serve as an efficient light harvesting agent. The combination of Bi2S3 NPs and a-Si:H NWs as well as Bi2S3 NPs and c-Si NWs provided the possibility to realize the desired wide-band spectrum of sunlight absorption.
    As this hybrid system was applied to a-Si:H and c-Si, the superior antireflection properties of NWs along with the integration of Bi2S3 NPs as light harvesting agents yielded a substantial enhancement in the optical absorption. For the solar cell based on Bi2S3 NPs / c-Si NWs, the result showed substantial enhancement in the short-circuit current density and power conversion efficiency compared to that of the solar cell based on only c-Si NWs (Jsc = 1.163 mA/cm2, PCE = 0.044 % for c-Si NWs and Jsc = 9.196 mA/cm2, PCE = 0.802 % for Bi2S3-NPs / c-Si NWs). Thus, the hybrid nanostructures presented in this study provided the feasibility for their future photovoltaic applications.

    目錄 摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 第二章 文獻回顧與原理簡介 2.1 太陽能電池簡介 2.1.1 太陽能電池工作原理 2.1.2 太陽能電池能量損失分析 2.1.3 太陽能電池電性簡介 2.2 非晶矽太陽能電池 2.3 量子點特性簡介 2.4 量子點太陽能電池 2.4.1 零維結合一維奈米結構之太陽能電池 第三章 實驗流程與方法 3.1 奈米線陣列製備 3.1.1 非晶矽奈米線陣列製備 3.1.2 單晶矽奈米線陣列製備 3.2 硫化鉍奈米粒子製備 3.3自組裝硫化鉍奈米粒子於矽基奈米線做為吸收層之太陽能電池製備 3.3.1 自組裝硫化鉍奈米粒子於非晶矽奈米線做為吸收層之太陽能電池製備 3.3.2 自組裝硫化鉍奈米粒子於單晶矽奈米線做為吸收層之太陽能電池製備 3.4 儀器簡介 3.4.1 場發射掃描式電子顯微鏡與能量散佈分析儀 3.4.2 高解析度穿透式電子顯微鏡 3.4.3 X光繞射分析儀 3.4.4 紫外/可見光吸收光譜儀 3.4.5 太陽能電池效率量測系統 第四章 實驗結果與討論 4.1 以濕式蝕刻法製備非晶矽奈米線 4.1.1 硝酸銀/氫氟酸濃度對銀奈米粒子形貌之影響 4.1.2 沉積時間對銀奈米粒子形貌之影響 4.2 以濕式化學法製備硫化鉍奈米粒子 4.2.1 碘化鉍、硫基丙酸、硫化氫濃度對硫化鉍奈米粒子結構形貌之影響 4.2.2 不同親水處理對硫化鉍奈米粒子結構形貌之影響 4.2.3 添加分散劑對硫化鉍奈米粒子分佈之影響 4.2.4 反應溫度對硫化鉍奈米粒子結構形貌之影響 4.3 硫化鉍奈米粒子之X光繞射分析 4.4 硫化鉍奈米粒子之微結構及成份分析 4.5 硫化鉍奈米粒子之紫外/可見光吸收光譜及其能隙分析 4.6 自組裝硫化鉍奈米粒子於非晶矽奈米線做為吸收層之太陽能電池元件分析 4.6.1 自組裝硫化鉍奈米粒子於非晶矽奈米線做為吸收層之太陽能電池微區結構分析 4.6.2 自組裝硫化鉍奈米粒子於矽基奈米線做為吸收層之紫外/可見光吸收光譜分析 4.6.3 自組裝硫化鉍奈米粒子於矽基奈米線做為吸收層之太陽能電池效率分析 第五章 結論 第六章 未來展望 參考文獻 本研究產出之論文發表 圖目錄 圖1.1 世界上可再生能源消耗之種類與比例。[4] 圖2.1 不同世代太陽能電池之效率-成本相關圖。[5,7,9] 圖2.2 (a) p-n接面能階示意圖與 (b) 太陽照射下電子、電洞在p-n接面移動之示意圖。[32,33] 圖2.3 太陽能電池能量損失分析圖。[5,34,35] 圖2.4 太陽能電池等效電路圖。[31,32] 圖2.5 太陽能電池J-V電性圖。[31,32] 圖2.6 太陽光照度AM 1與AM 1.5示意圖。[37] 圖2.7 半導體材料尺寸量子化之示意圖。[45] 圖2.8 太陽光在地表之光譜。[50] 圖2.9 量子點衝擊離子化效應 (impact ionization) 之示意圖。 圖2.10 半導體材料 (a) 不具有衝擊離子化效應與 (b) 具有衝擊離子化效應之光子激發示意圖。[51] 圖3.1 本研究之實驗流程圖。 圖3.2 非晶矽奈米線陣列置備之簡易示意圖。 圖3.3 本實驗硫化鉍奈米粒子自組裝合成於非晶矽奈米線陣列置備之簡易示意圖。 圖3.4 以glass / ITO / p-a-Si / Bi2S3 NPs on a-Si NWs / n-a-Si / AZO / Ag為堆疊順序之製作圖解。 圖3.5 以Al / p-c-Si / Bi2S3 NPs on n-c-Si NWs / Ag為堆疊順序之製作圖解。 圖3.6 本研究使用之掃描式電子顯微鏡 (SEM, JEOL 6500),位於清華大學材料系。 圖3.7 本研究使用之HRTEM (JEOL, JEM-2010),位於清華大學材料系。 圖3.8 本研究使用之X光繞射儀 (Shimadzu XRD 6000) 位於清華大學材料系。 圖3.9 本研究使用之紫外/可見光吸收光譜儀 (Jasco, ARSN-733) ,位於台大光電所何志浩教授實驗室。 圖3.10 紫外/可見光吸收光譜儀 (Jasco, ARSN-733) 內部構造圖。 圖3.11 本研究使用之太陽能量測系統中太陽光模擬器XES-301S (太陽光模擬器)、EL-100 (光源)、試片量測位置及量測探針,本系統位於清華大學奈材中心。 圖3.12 本研究使用之太陽能量測系統中之電性量測機台2400 Source Meter及其量測探針,位於清華大學奈材中心。 圖4.1 反應時間60秒與反應溫度為室溫之相同條件下,以 (a)、(b) 4.6 M HF / 0.01 M AgNO3,與 (c) 0.46 M HF / 0.001 M AgNO3之不同沉積溶液濃度所形成之Ag NPs的SEM觀察結果 (ɸ: size of Ag NPs)。 圖4.2 反應溫度為室溫及沉積溶液濃度為0.46 M HF / 0.001 M AgNO3之相同條件下,反應時間為 (a) 2分鐘、(b) 5分鐘、(c) 8分鐘所形成之Ag NPs的SEM觀察結果;在經過 (d) 2分鐘、(e) 5分鐘與 (f) 8分鐘沉積時間形成Ag NPs後進行蝕刻反應所形成之非晶矽奈米結構的SEM觀察結果 (ɸ: size of Ag NPs)。 圖4.3 以素玻璃做為基板、反應溫度為室溫、不添加分散劑之相同條件下,以三種不同的沉積溶液濃度 (a) 4×10-5 M BiI3 / 5×10-4 M 3-MPA / 0.5 ml H2S、(b) 4×10-4 M BiI3 / 5×10-3 M 3-MPA / 5 ml H2S與 (c) 4×10-3 M BiI3 / 5×10-2 M 3-MPA / 5 ml H2S經濕式化學法合成所形成之Bi2S3 NPs的SEM觀察結果。 圖4.4 以非晶矽薄膜做為基板,以溶液濃度為4×10-3 M BiI3 / 5×10-2 M 3-MPA / 5 ml H2S、反應溫度為室溫與不添加分散劑之相同條件下,經過 (a) 未經任何表面改質、(b) UV-ozone照射四十分鐘,與 (c) 浸泡於30 % H2O2中1小時等不同表面改質處理所形成之Bi2S3 NPs的SEM觀察結果。 圖4.5 以非晶矽薄膜做為基板、將試片浸泡於30 % H2O2中1小時做表面改質、沉積溶液濃度為4×10-3 M BiI3 / 5×10-2 M 3-MPA / 5 ml H2S反應溫度為50 C之條件下,(a)、(c) 未添加分散劑與 (b)、(d) 添加5×10-3 M CTAB做為分散劑,經濕式化學法合成所形成之Bi2S3 NPs的SEM觀察結果。 圖4.6 以非晶矽薄膜做為基板、將試片浸泡於30 % H2O2中1小時做表面改質、沉積溶液濃度為4×10-3 M BiI3 / 5×10-2 M 3-MPA / 5 ml H2S,並添加5×10-3 M CTAB做為分散劑,反應溫度分別為 (a) 50 C、(b) 60 C與 (c) 70 C,經濕式化學法合成所形成之Bi2S3 NPs的SEM觀察結果。 圖4.7 基板以30 %雙氧水溶液浸泡1小時做表面處理、反應溶液濃度為4×10-3 M BiI3 / 5×10-2 M 3-MPA / 5 ml H2S、添加5×10-3 M CTAB做為分散劑與反應溫度為50 C所製備出的Bi2S3 NPs之X光繞射分析圖譜。 圖4.8 基板以30 %雙氧水溶液浸泡1小時做表面處理、反應溶液濃度為4×10-3 M BiI3 / 5×10-2 M 3-MPA / 5 ml H2S、添加5×10-3 M CTAB做為分散劑與反應溫度為50 C所製備出的Bi2S3 NPs之TEM分析圖:(a) 明視野像及內嵌擇區電子繞射圖,(b) 較高倍率之明視野像,(c) 高解析度穿透式電子顯微鏡 (HRTEM) 影像及內嵌畫框區之晶格成像,及 (d) EDX分析圖及元素組成比例。 圖4.9 Bi2S3奈米粒子之 (a) 光學吸收光譜以及 (b) (αhν)2 - hν關係圖。 圖4.10 以Bi2S3 NPs / a-Si:H NWs做為吸收層之太陽能電池TEM分析:(a) 電池橫切面之明視野像以顯示各層結構,(b) 較高倍率之Bi2S3 NPs / a-Si:H NWs明視野像以及 (c) 高解析度穿透式電子顯微鏡 (HRTEM) 影像。 圖4.11 (a) 非晶矽薄膜 (300 nm)、非晶矽奈米線 (蝕刻深度150 - 180 nm) 與Bi2S3奈米粒子自組裝於非晶矽奈米線之吸收率光譜,以及 (b) 單晶矽 (~ 275 m)、單晶矽奈米線 (蝕刻深度~ 180 nm) 與Bi2S3奈米粒子自組裝於單晶矽奈米線之反射率光譜。 圖4.12 以 (a) 非晶矽薄膜、(b) 非晶矽奈米線以及 (c) 硫化鉍奈米粒子自組裝於非晶矽奈米線做為吸收層,製備之太陽能電池剖面圖。 圖4.13 以 (a) n層不連續沉積於p與i層之非晶矽薄膜、(b) 硫化鉍奈米粒子自組裝於非晶矽奈米線,以及 (c) p、i與n層連續沉積之非晶矽薄膜做為吸收層,製備之太陽能電池J-V電性圖。 圖4.14 以 (a) 單晶矽奈米線以及 (b) 硫化鉍奈米粒子自組裝於單晶矽奈米線做為吸收層,製備之太陽能電池J-V電性圖。 表目錄 表1.1 世界上可再生能源之能源蘊藏量比較表。[2] 表1.2 新世代能源估算成本比較表。[4] 表2.1 各式太陽能電池與模組於AM 1.5, 25 C下量測之效率比較表。[6, 12-31] 表2.2 非晶矽與單晶矽奈米結構之太陽能電池的特性比較表。 表2.3 太陽能電池實驗室最高效率及理論轉換效率比較表。[9] 表2.4 各式零維結合一維奈米結構之太陽能電池的特性比較表。 表4.1 JCPDS資料庫中Bi2S3晶面及其所對應之兩倍角。 表4.2 JCPDS資料庫中Bi2S3晶面及其所對應之晶面間距。 表4.3 以n層不連續沉積於p與i層之非晶矽薄膜、硫化鉍奈米粒子自組裝於非晶矽奈米線以及 p、i與n層連續沉積之非晶矽薄膜做為吸收層,製備之太陽能電池電性比較表。 表4.4 以單晶矽奈米線以及硫化鉍奈米粒子自組裝於單晶矽奈米線做為吸收層,製備之太陽能電池電性比較表。

    [1] BP Statistical Review of World Energy June 2011, 2011, 1-38.
    [2] 楊昌中,能源領域中的奈米科技研究,工業研究院 能源與環境研究所,2006.
    [3] John Perlin, “Powering the Planet.”, Nature, 2000, 403, 363-364.
    [4] Energy Information Administration, “2016 Levelized Cost of New Generation Resources from the Annual Energy Outlook 2010.”, International Energy Outlook 2010 – Highlights, 2010.
    Energy Information Administration, International Energy Outlook 2011.
    [5] M. A. Green, “Third Generation Photovoltaics: Ultra-high Conversion Efficiency at Low Cost.”, Prog. Photovolt: Res. Appl., 2001, 9, 123-135.
    [6] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar Cell Efficiency Tables (version 39).”, Prog. Photovolt: Res. Appl., 2012, 20, 12-20.
    [7] G. F. Brown and J. Wu, “Third Generation Photovoltaics.”, Laser & Photon. Rev., 2009, 3, 294-405.
    [8] N. S. Lewis, “Toward Cost-Effective Solar Energy Use.”, Science, 2007, 315, 798-801.
    [9] G. W. Crabtree and N. S. Lewis, “Solar Energy Conversion.”, Physics Today, 2007, 37-42.
    [10] D.M. Chapin, C.S. Fuller, and G.L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power.”, J. Appl. Phys., 1954, 25, 676-677.
    [11] J. Zhao, A. Wang and M. A. Green, “24.5% Efficiency Silicon PERT cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates.”, Progress in Photovoltaics, 1999, 7, 471-474.
    [12] J. Zhao, A. Wang, M. A. Green and F. Ferrazza, “Novel 19.8% Efficient ”Honeycomb” Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells.”, Applied Physics Letters, 1998, 73, 1991-1993.
    [13] O. Schultz, S. W. Glunz, and G. P. Willeke, “Multicrystalline Sili-con Solar Cells Exceeding 20% Efficiency.”, Prog. Photovolt: Res. Appl., 2004, 12, 553-558.
    [14] J. H. Petermann, D. Zielke, J. Schmidt, F. Rojas EG, and R. Brendel, “19 %-efficient and 43 m-thick crystalline Si solar cell from layer transfer using porous silicon.”, Progress In Photovoltaics 2012; published online DOI: 10.1002/pip. 1129.
    [15] M. J. Keevers, T. L. Young, U. Schubert, and M. A. Green, “10% efficient CSG Minimodules.”, 22nd European Photovoltaic Solar Energy Conference, Milan, September 2007. Progress In Photovoltaics: Research And Applications, 2008, 16, 235-239.
    [16] http://www.greentechmedia.com/articles/read/stealthyalta-devices-
    next-gen-pv-challenging-the-status-quo/
    [17] R. Venkatasubramanian, B. C. O‟Quinn, J. S. Hills, P. R. Sharps, M. J. Timmons, J. A. Hutchby, H. Field, A. Ahrenkiel, and B. Keyes, “18.2% (AM1.5) Efficient GaAs Solar Cell on Optical-grade Polycrystalline Ge Substrate.”, Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, May 1997, 31-36.
    [18] C. J. Keavney, V. E. Haven, and S. M. Vernon, “Emitter Structures in MOCVD InP Solar Cells.”, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990, 141-144.
    [19] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9 %-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2 % fill factor.”
    [20] http://www.q-cells.com
    [21] X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, A. Duda, T. A. Gessert , S. Asher,D. H. Levi, and P. Sheldon, “16.5%-efficient CdS/CdTe Polycrystalline Thin-film Solar Cell.”, Proceedings of 17th European Photovoltaic Solar Energy Conference, Munich, 22–26 October 2001, 995-1000.
    [22] S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Spitznagel, J. Steinhauser, L. Castens, and Y. Djeridane, “High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor.”, 24th European Photovoltaic Solar Energy Conference, Hamburg, September 2009.
    [23] K. Yamamoto, M. Toshimi, T. Suzuki, Y. Tawada, T. Okamoto, and A. Nakajima, “Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature.”, MRS Spring Meeting, San Francisco, April 1998.
    [24] N. Koide, R. Yamanaka, and H. Katayama, “Recent advances of dye-sensitized solar cells and integrated modules at SHARP.”, MRS Proceedings 2009, 1211, 1211-R12-02.
    [25] M. Morooka, R. Ogura, M. Orihashi, and M. Takenaka, “Development of dye-sensitized solar cells for practical applications.”, Electrochemistry, 2009, 77, 960-965.
    [26] R. Service, “Outlook brightens for plastic solar cells.”, Science, 2011, 332, 293.
    [27] K. Miyake, Y. Uetani, T. Seike, T. Kato, K. Oya, K. Yoshimura, and T. Ohnishi, “Development of next generation organic solar cell.” R&D Report, “SUMITOMO KAGAKU”, 2010, 2010-1.
    [28] A. W. Bett, F. Dimroth, W. Guter, R. Hoheisen, E. Oliva, S. P. Philipps, J. Schöne, G. Siefer, M. Steiner, A. Wekkeli, E. Welser, M. Meusel, W. Köstler, and G. Strobl, “Highest efficiency mul-ti-junction solar cell for terrestrial and space applications.”, Pro-ceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009, 1-6.
    [29] A. Banerjee, T. Su, D. Beglau, G. Pietka, F. Liu, G. DeMaggio, S. Almutawalli, B. Yan, G. Yue, J. Yang, and S. Guha, “High efficiency, multi-junction nc-Si:h based solar cells at high deposition rate.”, 37th IEEE PVSC, Seattle, June 2011.
    [30] http://www.kaneka-solar.com
    [31] M. Yoshimi, T. Sasaki, T. Sawada, T. Suezaki, T. Meguro, T. Matsuda, K. Santo, K. Wadano, M. Ichikawa, A. Nakajima, and K. Yamamoto, “High efficiency thin film silicon hybrid solar cell module on Im2-class large area substrate.”, Conference Record, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, May 2003, 1566-1569.
    [32] M. A. Green, Solar Cells, 1982, 62-84
    [33] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2003, 61-111
    [34] G. Conibeer, M. Green, R. Corkish, Y. Cho, E. C. Cho, C. W. Jiang, T. Fangsuwannarak, E. Pink, Y. Dd. Huang, T. Puzzer, T. Trupke, B. Richards and A. Shalav, K. L. Lin, “Silicon nanostructures for third generation photovoltaic solar cells.”, Thin Solid Films, 2006, 511-512, 654-662.
    [35] G. Conibeer, “Third-generation Photovoltaics.”, Materialstoday, 2007, 10, 42-50.
    [36] A. Sha, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells.”, Science, 1999, 285, 692-698.
    [37] N. Nijegorodov and P. V. C. Luhanga, “Air Mass Analytical and Empirical Treatment; an Improved Formula for Air Mass.”, Renewable Energy, 1996, 7, 57-65.
    [38] J, Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan and Y. Cui, “Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays.”, Nano Lett., 2009, 9, 279-282.
    [39] M. Tang, S. T. Chang, T. Z. Chen, Z. W. Pei, W. C. Wang and J. Huang, “Simulation of nanorod structures for an amorphous sili-con-based solar cell.”, Thin Solid Films, 2010, 518, S259-S261.
    [40] Y. H. Kuang, K. H. M. van der Werf, Z. S. Houweling and R. E. I. Schropp, “Nanorod solar cell with an ultrathin a-Si:H absorber layer.”, Appl. Phys. Lett., 2011, 98, 113111-1.
    [41] J. Zhu, C. M. Hsu, Z. F. Yu, S. H. Fan and Y. Cui, “Nanodome Solar Cells with Efficient Light Management and Self-Cleaning.”, Nano Lett., 2010, 10, 1979-1984.
    [42] K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee and J. Zhu, “Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications.”, small, 2005, 1, 1062-1067.
    [43] A. J. Nozik, “Quantum Dot Solar Cells.”, Physica E, 2002, 14, 115-120.
    [44] W. Shockley and H.J. Queisser, “Detailed Balance Limit of Effi-ciency of p-n Junction Solar Cells.”, J. Appl. Phys., 1961, 32, 510.
    [45] A.P. Alivisatos, “Perspectives on the Physical Chemistry of Semi-conductor Nanocrystals”, J. Phys. Chem., 1996, 100, 13226-13239.
    [46] W.W. Yu and X. Peng, “Formation of High-Quality CdS and Other Ⅱ-Ⅵ Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers.”, Angew. Chem. Int. Ed., 2002, 41, 2368.
    [47] S. Neeleshwar, C. L. Chen, C. B. Tsai, and Y. Y. Chen, “Size-dependent Properties of CdSe Quantum Dots.”, Physical Review B, 2005, 71, 201307-1.
    [48] O. I. Mic´ic´, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas, and A. J. Nozik, “Size-Dependent Spectroscopy of InP Quantum Dots.”, J. Phys. Chem. B., 1997, 101, 4904-4912.
    [49] L. M. Peter, K. G. U. Wijayantha, D. J. Riley, and J. P. Waggett, “Band-Edge Tuning in Self-Assembled Layers of Bi¬2S3 Nanoparti-cles Used To Photosensitize Nanocrystalline TiO2.”, J. Phys. Chem. B., 2003, 107, 8378-8381.
    [50] PVCDROM, http://www.pveducation.org/pvcdrom.
    [51] R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Klimov, “Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers.”, Nano Lett., 2008, 6, 424-429.
    [52] R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion.”, Phys. Rev. Lett., 2004, 92, 186601-1.
    [53] R. J. Ellingson, M. C. Beard, J. C. Johnson, P. R. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, and A. L. Efros, “Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots.”, Nano Lett., 2005, 5, 865-871.
    [54] R. D. Schaller, M. A. Petruska, and V. I. Klimova, “Effect of Elec-tronic Structure on Carrier Multiplication Efficiency: Comparative Study of PbSe and CdSe Nanocrystals.”, Appl. Phys. Lett., 2005, 87, 253102-1.
    [55] J. E. Murphy, M. C. Beard, A. G. Norman, S. P. Ahrenkiel, J. C. Johnson, P. R. Yu, O. I. Mic´ic´, R. J. Ellingson, and A. J. Nozik, “PbTe Colloidal Nanocrystals: Synthesis, Characterization, and Multiple Exciton Generation.”, J. Am. Chem. Soc., 2008, 128, 3241-3247.
    [56] J. J. H. Pijpers, E. Hendry, M. T. W. Milder, R. Fanciulli, J. Savolainen, J. L. Herek, D. Vanmaekelbergh, S. Ruhman, D. Mocatta, D. Oron, A. Aharoni, U. Banin, and M. Bonn, “Carrier Multiplication and its Reduction by Photodoping in Colloidal InAs Quantum Dots.”, J. Phys. Chem. C, 2007, 111, 4146-4152.
    [57] M. C. Beard, K. P. Knutsen, P. R. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple Exciton Generation in Colloidal Silicon Nanocrystals.”, Nano Lett., 2007, 7, 2506-2512.
    [58] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, V. P. S. Perera, and G. M. L. P. Aponsu, “Nanoporous n-TiO2/Selenium/p-CuCNS Photovoltaic cell.”, J. Phys. D: Appl. Phys., 1998, 31, 2326-2330.
    [59] C. Lévy-Clément, R. Tena-Zaera, M. A. Ryan, A. Katty, and G. Hodes, “CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunctions.”, Adv. Mater., 2005, 17, 1512-1515.
    [60] R. Vogel, P. Hoyer, and H. Weller, “Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide- Bandgap Semiconductors.”, J. Phys. Chem., 1994, 98, 3183-3188.
    [61] R. Vogela, K. Pohla, and H. Wellera, “Sensitization of Highly Porous, Polycrystalline TiO2 Electrodes by Quantum Sized CdS.”, Chem. Phys. Lett., 1990, 174, 241-246.
    [62] D. Liu and P. V. Kamat, “Photoelectrochemical Behavior of Thin CdSe and Coupled TiO2 CdSe Semiconductor-Films.”, J. Phys. Chem., 1993, 97, 10769-10773.
    [63] I. Robert, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films.”, J. Phys. Chem., 2006, 128, 2385-2393.
    [64] O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Ruhle, D. Cahen, and G. Hodes, “Chemical Bath Deposited CdS/CdSe-Sensitized Porous TiO2 Solar Cells.”, J. Photochem. Photobiol. A, 2006, 181, 306-313.
    [65] A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots.”, Langmuir, 1998, 14, 3153-3156.
    [66] P. R. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots.”, J. Phys. Chem. B, 2006, 110, 25451-25454.
    [67] K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, “Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices.”, Nano Lett., 2007, 7, 1793-1798.
    [68] Y. L. Lee and Y. S. Lo, “Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe.”, Adv. Funct. Mater., 2009, 19, 604-609.
    [69] W. U. Hutuh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells.”, Science, 2002, 295, 2425-2427.
    [70] W. Shockley and H. J. Queisser, “Detailed Balance Limit of Effi-ciency of p-n Junction Solar Cells.”, J. Appl. Phys., 1961, 32, 510-519.
    [71] K. T. Kuo, D. M. Liu, S. Y. Chen and C. C. Lin, “Core-shell CuInS2/ZnS quantum dots assembled on short ZnO nanowires with enhanced photo-conversion efficiency.”, J. Mater. Chem., 2009, 19, 6780-6788.
    [72] B. Güzeltürk, E. Mutlugün, X. D. Wang, K. L. Pey and H. V. Demir, “Photovoltaic nanopillar radial junction diode architecture enhanced by integrating semiconductor quantum dot nanocrystals as light harvesters.”, Appl. Phys. Lett., 2010, 97, 093111.
    [73] M. S. Seol, H. J. Kim, Y. J. Tak and K. J. Yong, “Novel nanowire array based highly efficient quantum dot sensitized solar cell.”, Chem. Commun., 2010, 46, 5521-5523.
    [74] W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen and L. M. Peng, “CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes.”, J. Am. Chem. Soc., 2008, 130, 1124-1125.
    [75] K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles.”, Adv. Funct. Mater., 2006, 16, 387-394.
    [76] I. Chan and A. Nathan, “Dry Etch Process Optimization for Small-area a-Si:H Vertical Thin Film Transistor.”, J. Vac. Sci. Technol. A, 2002, 20, 962-965.
    [77] M. Otobe, M. Kimura, and S. Oda, “Selective Etching of Hydrogenated Amorphous Silicon by Hydrogen Plasma.”, Jpn. J. Appl. Phys., 1994, 33, 4442-4445.
    [78] D. J. Riley, J. P. Waggetta, and K. G. U. Wijayantha, “Colloidal Bismuth Sulfide Nanoparticles: a Photoelectrochemical Study of the Relationship between Bandgap and Particle Size.”, J. Mater. Chem., 2004, 14, 704-708.
    [79] S. Tsunekawa, T. Fukuda and A. Kasuya, “Blue shift in ultraviolet absorption spectra of monodisperse CeO2x nanoparticles.”, J. Appl. Phys., 2000, 87, 1318-1321.
    [80] A. A. Tahir, M. A. Ehsan, M. Mazhar, K. G. U. Wijayantha, M. Zeller and A. D. Hunter, “Photoelectrochemical and Photoresponsive Properties of Bi2S3 Nanotube and Nanoparticle Thin Films.”, Chem. Mater., 2010, 22, 5084-5092.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE