簡易檢索 / 詳目顯示

研究生: 洪育良
Yu-Liang Hong
論文名稱: 非極性氮化銦薄膜之磊晶成長及基礎物性研究
Research on Nonpolar InN Films:Expitial Growth and Fundamental Properties
指導教授: 果尚志
S. Gwo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 61
中文關鍵詞: nonpolarInN
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要是藉著電漿輔助式分子磊晶系統(plasma assisted molecular beam epitaxy,PAMBE)在(11 ̅02)r-軸方向藍寶石(r-plane sapphire)基板上成長出品質優良的(112 ̅0)a-軸方向之非極性氮化銦薄膜,並深入地討論不同的緩衝層對非極性氮化銦薄膜的影響且分析其特性。在成長時利用反射式高能量電子繞射系統(reflection high energy electron diffraction,RHEED)做即時的現場監控,以判斷薄膜成長品質。成長後樣品再用掃描式電子束顯微鏡(scanning electron microscope,SEM)及原子力顯微鏡(atomic force microscope,AFM)做表面形貌的掃瞄,分析其粗糙度及形貌。並將使用X-Ray繞射儀確定薄膜的內部結構、特性與結晶品質,且計算出晶格常數,並可推算出基板與薄膜之晶格常數不匹配程度,因而了解兩者之間的應力大小的差異。本論文並以光致激發螢光光譜技術(photoluminescence spectroscopy),分析並確定非極性氮化銦薄膜的發光波段以及其發光機制,進而能夠改變成長條件去成長發光效率更良好的樣品。本論文以霍爾量測(Hall measurement)決定非極性氮化銦薄膜內的載子遷移率及載子濃度,諸多量測結果可確定了我們成長出的非極性氮化銦薄膜具有良好品質。論文內也有討論到利用不同的緩衝層去成長出非極性氮化銦薄膜,並比較其間特性的差異(表面形貌、結構特性、電性等)。在光致激發螢光光譜量測實驗中確定非極性氮化銦薄膜的基本能隙值應位於~ 0.65 eV附近,這個值與以往被認定的值(1.8-2.0 eV)有很大的出入,但與我們之前在c-軸方向成長的氮化銦薄膜的能隙值一致。


    第一章 研究背景.....................................................................................................1 第二章 儀器介紹及原理 2.1 電漿輔助式分子束磊晶系統.....................................................6 2.1.1 系統設備...............................................................................7 2.1.2薄膜成長機制......................................................................9 2.2 反射式高能量電子繞射............................................................12 2.3 X光繞射..........................................................................................17 2.4 光致激發螢光光譜量測............................................................21 第三章 非極性氮化銦薄膜之研究 3.0 文獻回顧…………………………………………………………………27 3.1 非極性氮化銦薄膜之成長介紹 3.1.1基板的重要性....................................................................29 3.1.2基板的選擇.........................................................................31 3.1.3基板的準備與成長過程.................................................34 3.2 非極性氮化銦薄膜之分析與討論 3.2.1 表面形貌分析..................................................................36 3.2.2反射式高能量電子繞射儀分析.................................41 3.2.3 X-Ray繞射晶體結構分析.............................................44 3.2.4光學性質分析....................................................................49 3.2.5傳輸特性量測與分析......................................................55 第四章 總結.............................................................................................................57 參考文獻 ..............................................................................................................................58

    [1] R. Juza and H. Hahn, Z. Anorg. Allg. Chem. 239, 282 (1938).
    [2] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).
    [3] V. Y. Davydov et al., Phys. Status Solidi B 229, R1 (2002).
    [4] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
    [5] V. Y. Davydov et al., Phys. Status Solidi B 230, R4 (2002).
    [6] M. Hori, K. Kano, T. Yamaguchi, Y. Saito, T. Araki, Y. Nanishi, N. Teraguchi, and A. Suzuki, Phys. Status Solidi B 234, 750 (2002).
    [7] V. Y. Davydov et al., Phys. Status Solidi B 234, 787 (2002).
    [8] Saito, H. Harima, E. Kurimoto, T. Yamaguchi, N. Teraguchi, A. Suzuki,T. Araki, and Y. Nanishi, Phys. Status Solidi B 234, 796 (2002).
    [9] T. Miyajima et al., Phys. Status Solidi B 234, 801 (2002).
    [10]Hai Lu, William J. Schaff, Lester F. Eastman, J. Wu, Wladek
    T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986).
    [11]S. Strite and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).
    [12]B.R. Nag, J. Crys. Grow. 269, 35-40 (2004).
    [13]V.W.L.Chin, T.L. Tansley, and T. Osotchan, J. Appl. Phys, 75, 7365 (1994).
    [14]Stephen K. O’Leary, Brian E. Foutz, Michael S. Shur, Lester F. Eastman, J Mater Sci: Mater Electron 17,87–126 (2006).
    [15]V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys. 75, 7365 (1994).
    [16]B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys. 85, 7727 (1999).
    [17]M.D.Craven, S.H.Lim, F.Wu, J.S.Speck, and S.P.DenBaars, Appl. Phys. Lett. 81, 469 (2002).
    [18]A. Chakraborty, B.A.Haskell, S.Keller, J.S.Speck, S.P.DenBaars,
    S.Nakamura, and U.K.Mishra, Jpn. J. Appl. phys. 45, 8659 (2006).
    [19]H. Lu , William J. Schaff, and L. F. Eastman, C. E. Stutz, Appl. Phys. Lett. 82, 1736(2003).
    [20]I.Mahboob, T.D.Veal, and C.F.McConville, H. Lu and W.J. Schaff, Phys. Rev. Lett, 92, nmber3, 036804-1 (2004).
    [21]A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, J. Cryst.Growth 137, 415 (1994).
    [22] M.A. Herman: Vacuum 32, 555 (1982)
    [23] S. Dushmann: Scientific Foundations of Vacuum Technique
    (Wiley, New York 1962)
    [24] L.B. Leo: The Kinetic Theory of Gas, 2nd (McGraw-Hill, New York 1934)
    [25] M.A. Herman :Semiconductor Superlattices (Akademie-Verlag, Berlin 1986)
    [26] 林弘偉。國立清華大學,碩士論文,氮化銦磊晶薄膜及量子點材料之研究(2004)
    [27] 張石麟。材料分析,汪建民主編:中國材料科學學會 (1998)。
    [28]B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1967)
    [29] H.Lu, W. J. Schaff, and L. F. Eastman, J. Wu and W. Walukiewicz, V. Cimalla and O. Ambacher, Appl. Phys. Lett. 83, number6, 1136(2003)
    [30]A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, Sol. Energy Mater. Sol. Cells 35, 53 (1994).
    [31]A. Yamamoto, Y. Yamauchi, T. Ogawa, M. Ohkubo, and A. Hashimoto, Inst. Phys. Conf. Ser. 142, 879 (1996).

    [32]A. Yamamoto, Y. Yamauchi, M. Ohkubo, A. Hashimoto, and T. Saitoh, Solid-State Electron. 41, 149 (1997).
    [33]T. Yodo, H. Ando, D. Nosei, and Y. Harada, Phys. Status Solidi B 228, 21 (2001).
    [34]T. Yodo, H. Yona, H. Ando, D. Nosei, and Y. Harada, Appl. Phys. Lett.80, 968 (2002).
    [35]J. W. Trainor and K. Rose, J Electron. Mater. 3, 821 (1974)
    [36]C.-L. Wu, J.-C. Wang, M.-H. Chan, T. T. Chen, and S. Gwo, Appl. Phys. Lett. 83, 4530 (2003).
    [37]H.-J. Kwon, Y.-H. Lee, O. Miki, H. Yamano, and A. Yoshida, Appl. Phys Lett. 69, 937 (1996).
    [38]J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, J. Appl. Phys. 94, 4457 (2003).
    [39] E. Kurimoto, M. Hangyo, H. Harima, M. Yoshimoto, T. Yamaguchi, T. Araki, Y. Nanishi, K. Kisoda, Appl. Phys. Lett. 84, 212 (2004)
    [40]T. Matsuoka, H. Okamoto and M. Nakao, H. Harima, E. Kurimoto, Appl. Phys. Lett., Vol. 81, No. 7, 1246 (2002)
    [41]Hai Lu, William J. Schaff, Jeonghyun Hwang, Hong Wu, Goutam Koley, and Lester F. Eastman, Appl. Phys. Lett. 79, 1489 (2001)
    [42] V.W.L.Chin, T.L. Tansley, and T. Osotchan, J. Appl. Phys, 75, 7365 (1994).
    [43] H.-J. Kwon, Y.-H. Lee, O. Miki, H. Yamano, and A. Yoshida, Appl. Phys. Lett. 69,937 (1996).
    [44] K. Xu and A. Yoshikawa, Appl. Phys. Lett. 83, 251 (2003)
    [45] H.Lu, W. J. Schaff, L. F. Eastman, J. Wu, W. Walukiewicz, V. Cimalla, and O.Ambacher, Appl. Phys. Lett. Vol. 83, No. 6, 1136 (2003).
    [46] J. Bhattacharyya, S. Ghosh, M. R. Gokhale, B. M. Arora, H. Lu, and W. J. Schaff, Appl. Phys. Lett. Vol. 89, 151910 (2003).
    [47] E. Koppensteiner, P. Hamberger, G. Bauer, V. Holy, and E. Kasper, Appl. Phys. Lett. Vol. 64, No. 2, 172 (1993).
    [48]Braun, Wolfgang, Applied RHEED :reflection high-energy electron diffraction during crystal growth, Springer (1999)
    [49]J. L. Hollander, M. J. Kappers, C. Johnston, C. McAleese, C. J. Humphreys, Growth of (112 ̅0) and (112 ̅2) GaN on r- and m-plane Sapphire

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE