研究生: |
莊孟哲 Juang, Meng-Je |
---|---|
論文名稱: |
人體突觸蛋白與肌醇六磷酸之複合物結構探討 Study on Complex Structure between Human Synaptotagmin I C2B Domain and Inositol Hexakisphosphate |
指導教授: |
余靖
Yu, Chin |
口試委員: |
莊偉哲
Chuang, Woei-Jer 陳金榜 Chen, Chin-Pan 洪嘉呈 Horng, Jia-Cherng 江昀緯 Chiang, Yun-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 117 |
中文關鍵詞: | 核磁共振 、突觸結合蛋白 、六磷酸肌醇 |
外文關鍵詞: | Nuclear Magnetic Resonance, Synaptotagmin I, Inositol hexakisphosphate |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
突觸結合蛋白 I (Synaptotagmin I, Syt I)是神經細胞突觸囊泡上的一種膜蛋白,而C2A與C2B則是其具有重要功能的胞質片段。近年的研究顯示,C2A會與鈣離子作用,而C2B則會與多磷酸肌醇作用。在鈣離子引發的神經傳導物質釋放的過程中,C2A與鈣離子的結合會活化神經傳導物質從神經突觸前膜釋放,但當C2B與多磷酸肌醇結合則會抑制此過程。利用親和性層析方法先將C2AB片段與老鼠大腦萃取物混合後,再以含有六磷酸肌醇之沖湜液沖湜,發現另一複合蛋白的次體、μ2, the subunit of clathrin assembly protein, AP-2。此結果顯示,當六磷酸肌醇與C2B結合時,會改變Syt I–AP-2間的作用力,進而抑制神經傳導物質的釋放。我們利用多維核磁共振的技術來研究C2B與六磷酸肌醇的複合物結構。我們的研究結果顯示,當六磷酸肌醇與C2B結合後,會引發C2B蛋白之結構改變,進而使C2B喪失了與AP-2的結合力。此研究結果在藥物學的治療上針對神經失調疾病將有助於開發出更好的新藥。
Abstract
Synaptotagmin I (Syt I) is a synaptic vesicle membrane protein that contains two copies of highly conserved protein kinase C homology regions known as the C2A and C2B domains. The C2A domain binds Ca2+ and the C2B domain binds inositol high polyphosphates (IP4, IP5, and IP6). It has been reported that Ca2+ regulated exocytosis of secretory vesicles is proposed to be activated by Ca2+ binding to the C2A domain and inhibited by inositol polyphosphate binding to the C2B domain. Syt I is also known to be present in neuronal growth cone vesicles. Affinity elution chromatography from the C2 domain of Syt I-immobilized Sepharose using IP6 as the eluent found that several proteins, including an adaptin, specific subunits of the clathrin assembly protein, AP-2 were eluted from the mouse brain. It suggests that inositol high polyphosphate-binding to the C2B domain of Syt I alter the state of protein–protein interaction including the Syt I–AP-2 interaction. Thus, the inositol high polyphosphate may result in the inhibition of events involved in the synaptic vesicle trafficking. In this study, we used NMR to solve the C2B-IP6 3D complex structure. Our data provide new evidence for the hypothesis that the conformational change of C2B binding to IP6 alter the interface of C2B- AP-2. This information will aid in the design of better pharmacological treatments for neurological disorders.
References:
1. Jahn, R. and Südhof, T. C. (1999) Membrane fusion and exocytosis. Annu Rev Biochem. 68, 863-911.
2. Augustine, G. J. (2001) How does calcium trigger neurotransmitter release? Curr Opin Neurobiol. 11, 320-3266.
3. Chapman, E. R., (2002) Synaptotagmin: A Ca2+ that triggers exocytosis? Nat Rev Mol Cell Biol. 3, 498-508.
4. Kata, B. (1969) The release of neurotransmitter substances. Thomas, Springfield, Illinois.
5. Matthew, W. D., Tsavaler, L. and Reichardt, L. F., (1981) Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J Cell Biol. 91, 257-69.
6. Walch-Solimena, C., Takei, K., Marek, K. L., Midyett, K., Südhof, T.C., De Camilli, P. and Jahn, R. (1993) Synaptotagmin: a membrane constituent of neuropeptide-containing large dense-core vesicles. J Neurosci. 13, 3895-3903.
7. Perin, M. S., Fried, V. A., Mignery, G. A., Jahn, R. and Südhof, T. C. (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature. 345, 260-263.
8. Perin, M. S., Johnston, P. A., Ozcelik, T., Jahn, R., Francke, U. and Südhof, T. C. (1991) Structural and functional conservation of synaptotagmin (p65) in Drosophila and humans. J Biol Chem. 266, 615-622.
9. Craxton, M. (2001) Genomic analysis of synaptotagmin genes. Genomics. 77, 43-49.
10. Chapman, E.R. and Jahn, R. (1994) Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J. Biol. Chem. 269, 5735-5741.
11. Bai, J. and Chapman, E. R. (2004) The C2 domains of synaptotagmin--partners in exocytosis. Trends Biochem Sci. 29, 143-151.
12. Geppert, M., Goda, Y., Hammer, R. E., Li, C., Rosahl, T. W., Stevens, C.F. and Südhof, T. C. (1994) Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell. 79, 717-727.
13. DiAntonio, A. and Schwarz, T. L. (1994) The effect on synaptic physiology of synaptotagmin mutations in Drosophila. Neuron. 12, 909-920.
14. Jorgensen, E. M., Hartwieg, E., Schuske, K., Nonet, M. L., Jin, Y. and Horvitz, H. R. (1995) Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature. 378, 196-199.
15. Haucke, V. and DeCamilli, P. (1999) AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science. 285, 1268-1271.
16. Poskanzer, K. E., Marek, K. W., Sweeney, S.T. and Davis, G. W. (2003) Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature. 426, 559-563.
17. Elferink, L. A., Peterson, M. R. and Scheller, R. H. (1993) A role for synaptotagmin (p65) in regulated exocytosis. Cell. 72, 153-159.
18. Fukuda, M., Moreira, J. E., Lewis, F. M., Sugimori, M., Niinobe, M., Mikoshiba, K. and Llinás, R. (1995) Role of the C2B domain of synaptotagmin in vesicular release and recycling as determined by specific antibody injection into the squid giant synapse preterminal. Proc. Natl Acad Sci. 92, 10708-10712.
19. Bommert, K., Charlton, M. P., DeBello, W. M., Chin, G. J., Betz, H. and Augustine, G. J. (1993) Inhibition of neurotransmitter release by C2-domain peptides implicates synaptotagmin in exocytosis. Nature. 363, 163-165.
20. Littleton, J. T., Bai, J., Vyas, B., Desai, R., Baltus, A. E., Garment, M. B., Carlson, S. D., Ganetzky, B. and Chapman, E. R. (2001) synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo. J Neurosci. 21, 1421-1433.
21. Takei, K. and Haucke, V. (2001) Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell Biol. 11, 385-391.
22. Haucke, V. and De Camilli, P. (1999) AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science. 285, 1268-1271.
23. Holz, R. W., Hlubek, M. D., Sorensen, S. D., Fisher, S. K., Balla, T., Ozaki, S., Prestwich, G. D., Stuenkel, E. L. and Bittner, M. A. (2000) A pleckstrin homology domain specific for phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P2 as being important in exocytosis. J Biol Chem. 275, 17878-17885.
24. Micheva, K. D., Holz, R. W. and Smith, S. J. (2001) Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity. J Cell Biol. 154, 355-368.
25. Fukuda, M., Aruga, J., Niinobe, M., Aimoto, S. and Mikoshiba, K. (1994) Inositol-1,3,4,5-tetrakisphosphate binding to C2B domain of IP4BP/synaptotagmin II. J Biol Chem. 1994 269, 29206-29211.
26. Llinás, R., Sugimori, M., Lang, E. J., Morita, M., Fukuda, M., Niinobe, M. and Mikoshiba, K. (1994) The inositol high-polyphosphate series blocks synaptic transmission by preventing vesicular fusion: a squid giant synapse study. Proc Natl Acad Sci. 91, 12990-12993.
27. Mehrotra, B., Elliott, J. T., Chen, J., Olszewski, J. D., Profit, A. A., Chaudhary, A., Fukuda, M., Mikoshiba, K. and Prestwich, G. D. (1997) Selective photoaffinity labeling of the inositol polyphosphate binding C2B domains of synaptotagmins. J Biol Chem. 272, 4237-4244.
28. Mizutani, A., Fukuda, M., Niinobe, M. and Mikoshiba, K. (1997) Regulation of AP-2-synaptotagmin interaction by inositol high polyphosphates. Biochem Biophys Res Commun. 240, 128-131.
29. Fernandez, I., Araç, D., Ubach, J., Gerber, S. H., Shin, O., Gao, Y., Anderson, R. G., Südhof, T. C. and Rizo, J. (2001) Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron. 32, 1057-1069.
30. Szwergold, B. S., Graham, R. A. and Brown, T. R. (1987) Observation of inositol pentakis- and hexakis-phosphates in mammalian tissues by 31P NMR. Biochem Biophys Res Commun. 149, 874-881.
31. Sasakawa, N., Sharif, M. and Hanley, M. R. (1995) Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem Pharmacol. 50, 137-146.
32. Hanakahi, L. A., Bartlet-Jones, M., Chappell, C., Pappin, D. and West, S. C. (2000) Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell. 102, 721-729.
33. Norris, F. A., Ungewickell, E. and Majerus, P. W. (1995) Inositol hexakisphosphate binds to clathrin assembly protein 3 (AP-3/AP180) and inhibits clathrin cage assembly in vitro. J Biol Chem. 270, 214-217.
34. York, J. D., Odom, A. R., Murphy, R., Ives, E. B. and Wente, S. R. (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science. 285, 96-100.
35. Shears, S. B. (2001) Assessing the omnipotence of inositol hexakisphosphate. Cell Signal. 13, 151-158.
36. Xu, Q., Kanthasamy, A. G., and Reddy, M. B. (2008) Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson's disease. Toxicology 245, 101–108.
37. Graf, E., and Eaton, J. W. (1990) Antioxidant functions of phytic acid. Free Radical Biol. Med. 8, 61–69.
38. Sattler, M., Schleacher, J. and Griesinger, C. (1999) Heteronuclear - multidimensional NMR experiments for structure determination of proteins in solution using pulsed field gradients. Prog. Nucl. Magn. Reson. Spectro., 34 93-158.
39. Goddard, T. D., and Kneller, D. G. SPARKY 3, University of California, San Francisco, CA.
40. Grzesiek, S., and Bax, A. (1992) An efficient experiment for sequential assignment of medium sized backbone isotopically enriched protein. J. Magn. Reson. B 110, 201–210.
41. Wittekind, M., and Mueller, L. (1993) HNCACB, a high sensitivity 3D NMR experiment to correlate the amide proton and nitrogen resonances with alpha-carbon and beta-carbon resonances in proteins. J. Magn. Reson. B 99, 638–643.
42. Clubb, R. T., Thanabal, V., and Wagner, G. A. (1992) Constant time 3-dimensional triple resonance pulse scheme to intraresidue H-1(N), N-15, C-13(‘) chemical shifts in N-15, C-13 enriched proteins. J. Magn. Reson. 97, 213–217.
43. Kay, L. E., Xu, G. Y., and Yamazaki, G. (1994) Enhanced-sensitivity triple-resonance spectroscopy with minimalH2Osaturation. J. Magn. Reson. A 109, 129–133.
44. Pascal, S. M., Muhandiram, D. R., Yamazaki, T., Forman-Kay, J. D., and Kay, L. E. (1994) Simultaneous acquisition of 15N- and 13Cedited NOE spectra of proteins dissolved in H2O. J. Magn. Reson. B. 103, 197–201.
45. Breeze, A. L. (2000) Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Prog. Nucl. Magn. Res. Spectrosc. 36, 323–372.
46. Chang, Y. G., Song, A. X., Gao, Y. G., Shi, Y. H., Lin, X. J., Cao, X. T., Lin, D. H., and Hu, H. Y. (2006) Solution structure of the ubiquitin-associated domain of human BMSC-UbP and its complex with ubiquitin. Protein Sci. 15, 1248–1259.
47. Fukuda, M., Kojima, T., Aruga, J., Niinobe, M., and Mikoshiba, K. (1995) Functional diversity of C2 domains of synaptotagmin family. Mutational analysis of inositol high polyphosphate binding domain. J. Biol. Chem. 270, 26523-26527.
48. Wishart, D. S. and Sykes, B. D. (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 4, 171-180.
49. Cornilescu, G., Delaglio, F. and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR. 13, 289-302.
50. Nilges, M., Macias, M. J., O'Donoghue, S. I. and Oschkinat, H. (1997) Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J Mol Biol. 269, 408-422.
51. Pascal, S. M., Muhandiram, D. R., Yamazaki, T., Formankay, J. D. and Kay, L. E. (1994) Simultaneous Acquisition of 15N- and 13C-Edited NOE Spectra of Proteins Dissolved in H2O. J. Magn. Reson. Ser B. 103, 197-201.
52. Rieping, W.,Habeck, M., Bardiaux, B., Bernard,A., Malliavin, T. E., and Nilges,M. (2007) ARIA2: Automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23, 381–382.
53. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486.
54. Dominguez, C., Boelens, R., and Alexandre, M. J. J. B. (2003) HADDOCK: A protein-protein docking approach based on biochemical and/or biophysical information. J. Am. Chem. Soc. 125, 1731–1737.
55. De Vries, S. J., van Dijk, A. D. J., Krzeminski, M., van Dijk, M., Thureau, A., Hsu, V., Wassenaar, T., and Bonvin, A. M. J. J. (2007) HADDOCK versus HADDOCK: New features and performance of HADDOCK2.0 on the CAPRI targets. Proteins: Struct., Funct., Bioinf. 69, 726–733.
56. Veverka, V., Crabbe, C., Bird, I., Lennie, G., Muskett, F. W., Taylor, R. J., and Carr, M. D. (2008) Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: Compelling evidence for a central role of theFRBdomain in small molecule-mediated regulation of mTOR. Oncogene 27, 585–595.
57. Tomaselli, S., Ragona, L., Zetta, L., Assfalg, M., Ferranti, P., Longhi, R., Bonvin, A. M. J. J., and Molinari, H. (2007) NMR-based modeling and binding studies of a ternary complex between chicken liver bile acid binding protein and bile acids. Proteins: Struct., Funct., Bioinf. 69, 177–191.
58. Brunger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography & NMR system: A new software system for macromolecular structure determination. Acta Crystallogr., Sect. D: Biol. Crystallogr. 54, 905–921.
59. Petros, M., Kawai, M., Luly, J. R., and Fesik, S. W. (1992) Conformation of two non-immunosuppressive FK506 analogs when bound to FKBP by isotope-filtered NMR. FEBS Lett. 308, 309-314.
60. Kleywegt, G. J. (2007) Crystallographic refinement of ligand complexes. Acta Crystallogr. 63, 94–100.
61. Hubbard, S. J., and Thornton, J. M. (1993) NACCESS, Computer Program, Department of Biochemistry and Molecular Biology, University College London.
62. Jorgenson, W. L., and Tirado-Rives, J. (1988) The OPLS (optimized potentials for liquid simulations) potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666.
63. Grass, I., Thiel, S., Honing, S., and Haucke, V. (2004) Recognition of a Basic AP-2 Binding Motif within the C2B Domain of Synaptotagmin Is Dependent on Multimerization. J. Biol. Chem. 279, 54872-54880.