研究生: |
陳建旭 Chien-Hsu Chen |
---|---|
論文名稱: |
離子溝道效應應用在材料結構之研究 Ion Channeling Study of Material Structure |
指導教授: |
吳秀錦
Shiu-Chin Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 離子溝道效應 、砷化銦量子點 、鈮酸鋰 |
外文關鍵詞: | RBS, ion-channeling, self-assembly quantum dots, InAs, lithium niobate |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
砷化銦量子點是利用砷化銦與砷化鎵的晶格常數差以分子束磊晶( MBE )生長出自行組成量子點,以此法生長的量子點其內部與周圍會存有應力,其應力的分佈與大小會影響量子點的光電特性及品質。本論文係利用離子溝道效應量測量子點樣品砷化銦量子點的晶格結構,並同時量測量子點樣品基板(砷化鎵晶圓)與量子點上覆蓋層的晶格結構,發現三者的對稱軸不互相重疊,推測為應力所造成;並藉由量測對稱軸偏移的量做為估計應力方法。
另外以相同的分析方式研究鈮酸鋰在外加電場的條件下因電場誘發的相轉變,但是本論文中沒有量測到鈮酸鋰因為外加電場所造成的晶格變化。
Due to the mismatch of InAs with respect to GaAs, self-assembly quantum dots are formed when more than 1.4 monolayer (ML) of InAs are grown. This self-assembly quantum dots are known as Stranski-Krastanov growth mode. There exists strain in and around this self-assembly quantum dots fabricated by molecular-beam-epitaxy( MBE ). The presence of strain in and around the quantum dots influences the optical properties.
This thesis uses ion-channeling method to investigate the structure of quantum dots (InAs), the base of quantum dots (GaAs wafer) and the cap layer of quantum dots in the same time. The results show theirs axes of symmetry are not coincided. It supposes caused by strain in and around the quantum dots.
In addition, using the same technique measures the lattice structure of lithium niobate under in situ E-field induced phase transition. But it fails to find any difference of the lattice structure of lithium niobate under phase transition.
Reference
[R2-1] W.K. Chu , J.W. Mayer , M-A. Nicolet , Backscattering spectrometry, Academic press, Inc., 1978.
[R2-2] 吳秀錦,拉賽福回向散射分析及其應用,科儀新知第十七卷三期84.12.
[R2-3] J. B. Marion, and F. C. Young, “Nuclear Reaction Analysis, Graphs and Tables,” 1968 Wiley, New York
[R2-4] L. C. Feldman, J. W. Mayer, and S. T. Picraux, “Materials analysis by ion channeling,” 1982., Ch. 5, Academic Press, New York.
[R2-5] D.S. Gemmell, Rev. Mod. Phys. V46 129 1974
[R2-6] J. Lindhard Mat. Fys. Medd. Dan. Vid. Selsk. 34 (14),1 1965
[R2-7] A. Messiah “Quantum Mechanics,” J. Wiley, New York 1962
[R3-1] HIGH VOLTAGE Inc.
[R3-2] National Electronic Company.
[R3-4] Computer program, National Instrument Inc.
[R3-5] Y. Yamamoto, Automatic beam alignment for channeling measurements in Rutherford backscattering spectrometry. Nucl. Instr. and Meth. 190(1981)171-176.
[4-1] L.G. Wang, P. Krater, N. Moll, and M. Scheffler, Phys. Rev. B 62, 1897(2000)
[4-2] Q.K.K Liu, N. Moll, M. Scheffler, and E Pehlke, Phys. Rev. B 60, 17008(1999)
[4-3] A-L. Barabasi Mat. Sci. & Eng. B-Solid State Materials for Advanced Technology B 67, 23(1999)
[4-4] C. Kittel, Introduction to Solid State Physics, Chapter 6
[4-5] W.R. Allen and W.K. Chu, Phys. Rev. B 39, 3954(1989)
[4-6] C.K. Pan, D.C. Zheng, T.G. Finstad, and W.K. Chu, Phys. Rev. B 31, 1270(1985)
[R5-1] M. K. Durbin, E. W. Jacobs, and J. C. Hicks, S.-E. Park, App. Phys. Lett. 74 Issue 19 2848(1999)
[R5-2] W.H. Zachariasen, Skr, Norske Vid-Ada, Oslo, Mat. Naturv. No. 4 (1928)
[R5-3] B.T. Matthias and J.P. Remeika, “Ferroelecricity in the illmenite structure”, Phys. Rev. 76 1886 (1949)
[R5-4] A.A.Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique”, J. American Ceram. Soc. 48 (1965)
[R5-5] H.D. Megaw, “A note on the structure of lithium niobate”, Acta. Cryst. A24 583 (1968)
[R5-6] A.M Prokhorov, Yu S. Kuz’minov, “Physics and Chemistry of Crystalline Lithium Niobate” Adam Hilger, Bristol and New York 1990 ISBN 0-85274-002-6
[R5-7] G. D. Miller , Poster presentation at the centor for Nonlinear Optical Materials Annual Review, August, 1994
[R5-8] G. G. Bentini, M. Bianconi, M. Charini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M.Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3:Planar optical waveguide formation and characterization”,J. App. Phys. 92 6477 (2002)