簡易檢索 / 詳目顯示

研究生: 蘇佳文
論文名稱: 蛋白質間雙硫鍵之生成對鼠腦後突觸質密區之影響
指導教授: 張兗君
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2000
畢業學年度: 88
語文別: 中文
論文頁數: 58
中文關鍵詞: 後突觸質密區雙硫鍵
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 後突觸質密區(postsynaptic density, 簡稱PSD)是由後突觸膜(postsynaptic membrane)下方由超過三十多種蛋白質聚集成的結構。
    根據PSD的蛋白質組成與所在位置,可以推測PSD與神經受器聚集、神經訊息傳導、突觸結構以及神經可塑性有密切的相關性。以往使用的純化方法會增加PSD內雙硫鍵的生成,使其結構緊密穩固,以致無法用一般的化學方法分析內部的蛋白質組成。本實驗在鼠腦PSD的純化過程中分別加iodoacetamide (修飾PSD中的自由硫氫基;所得到的PSD稱為CM-PSD)、dithioerythritol (DTE, 切斷暴露在外的雙硫鍵;所得到的PSD稱為DTE-PSD)來減少純化過程中隨機生成的雙硫鍵。

    對PSD的產率、主要組成蛋白質鑑定與主要組成蛋白質的相對含量的分析結果顯示,iodoacetamide與DTE不會對鼠腦中PSD的組成蛋白質造成影響。再使用不同藥劑 (如urea、guanidine-HCl、DOC與glycine/phosphoric acid) 處理PSD,並以蔗糖濃度梯度離心分析經此處理所產生的小分子,結果顯示DTE-PSD與 CM-PSD結構較鬆散,比PSD容易被藥劑打散。最後利用電子顯微鏡觀察,發現DTE-PSD與 CM-PSD呈現鬆散網狀結構,而PSD的結構卻相當緊密。這些現象與豬腦中純化出的PSD (Lai et al., 1998) 相同,顯示鼠腦PSD的純化過程中,也因蛋白質暴露在氧化環境中,而增加蛋白質間雙硫鍵,使PSD聚集成緊密的大分子結構。藉由加入IAA與DTE的方式純化鼠腦PSD,得到雙硫鍵含量較少,且結構較鬆散的PSD。


    摘要 1 一、前言 5 二、材料與方法 14 2.1藥品與材料 14 2.2 PSD的純化與組成蛋白質鑑定 15 (1) PSD 的純化 15 (2)蛋白質濃度測定 18 (3)蛋白質濃縮 18 (4)凝膠電泳分析( SDS-PAGE ) 18 (5)西方點漬法( western blot ) 19 (6)膠片染色與蛋白質定量 21 2.3 PSD的分解程度 21 (1)蔗糖濃度梯度離心( Sucrose density gradient 21 ultracentrifugation ) 21 (2) PSD的處理 22 三、結果 23 3.1 PSD的純化 23 3.2 PSD結構緊密程度之比較 25 4討論 29 五、參考文獻 34 六、圖表 42 表一、鼠腦純化PSD的產率 42 圖一、PSD、DTE-PSD與CM-PSD之主要蛋白質含量比較 43 表二、PSD、DTE-PSD與CM-PSD蛋白質分子量之比較 44 圖二、PSD、DTE-PSD與CM-PSD經蔗糖濃度梯度離心分析之結果 45 圖三、Urea對PSD、DTE-PSD與CM-PSD的蔗糖濃度梯度離心分析之影響 47 圖四、Guanidine對PSD、DTE-PSD與CM-PSD的蔗糖濃度梯度離心分析之影響 49 圖五、Na-deoxycholate對PSD、DTE-PSD與CM-PSD的蔗糖濃度梯度離心分析之影響 51 圖六、Glycine/H3PO4對PSD、DTE-PSD與CM-PSD的蔗糖濃度梯度離心分析之影響 53 附錄一、純化所得PSD、DTE-PSD與CM-PSD之蛋白質組成與鑑定 55 附錄二、純化得到的PSD、DTE-PSD與CM-PSD以負染法在TEM下的觀察: 56

    五、參考文獻
    A. Dosemeci and T.S. Reese (1995) Effect of capalin on the composition and structure of postsynaptic densities. Synapes 20, 91-97.
    Adam, G., Matus, A., (1996) Role of actin in the organization of brain postsynatic densities. Brain res Mol Brain Res, 43, 246-250.
    Allison, D.W., Gelfand, V.I., Spector, I. And Craig, A.M. (1998)Rolr of actin in anchoring postsynaptic receptors in cultured hippocampal neurons:differential attachment of NMDA versus AMPA receptors.J. Neurosci. 18, 2423-2436.
    Aizenman, E., Lipton, S.A. and Loring, R.H.(1989) Selectivemodulation of NMDA response by reduction and oxidation. Neuron 2, 1257-1263.
    Apperson,M.L., Moon, I.S., and Kennedy, M.B.(1996) Characterization of densin-180, a new brain -specific synaptic protein of the O-sialoglycoprotein family. J. Neurosci. 16, 6839-6852.
    Beesley, P.W.., Mummery, R. and Tibaldi, J. (1995) N-cadherin is a major glycoprotein component of isolated rat forebrain postsynaptic densities. J. Neurochem.64, 2288-2294.
    Blitz, A.L. and Fine, R.E. (1974) Muscle-like contractile proteins and tubulin in synaptosomes. Proc.Natl. Acad. Sci. USA 71,4472-4476.
    Brose,N., G.W. Huntley, Y. Stern-Bach, G.Sharna, J.H. Morrsion, S.F. Heinemann. (1994) Differential assembly of coexpressed glutamate receptor subunits in neurons of rat cerebral cortex. J. Biol Chem. 269, 16780-16784.
    Cancers, A., Payne, M.R., Binder, L.I., and Steward, O. (1983) Immunocytochemical localization of actin and microtubule- associated protein MAP2 in dendritic spines., Proc.Natl. Acad. Sci. USA 80, 1738-1742.
    Carlin, R.K., Grab, D.J., Cohen, R.S. and Siekevitz, P. (1980) Isolation and characterization of postsynaptic densities form various brain regions: enrichment of different types of postsynaptic densities. J. Cell Biol. 86, 831-843.
    Carlin, R.K., Grab, D.J. and Siekevitz, P. (1982) Postmortem accumulation of tubulin in postsynaptic density preparations. J. Neurochem. 38, 94-100.
    Carlin, R.K. and Siekevitz, P. (1984) Characterization of Na+-independent of GABA and flunitrazepam binding sites in preparations of synaptic membranes and postsynaptic densities from canine cerebral cortex and cerebellum. J. Neurochem.43, 1011-1017.
    Carr, D.W., Stofko, H.R., Fraser, I.D., Cone, R.D. and Scott, J.D. (1992) Localization of the camp-dependent protein kinase to the postsynaptic densities by A-kinase anchoring proteins. Characterization of AKAP 79. J. Bilo. Chem. 267, 16818-16823.
    Cohen, R.S., Blomberg, F., K. and Siekevitz, P. (1977) The structure of postsynaptic densities isolated form dog cerebral cortex I: overall morphology and protein composition. J. Cell Biol. 74, 181-203.
    Cohen, R.S. and Siekevitz, P. (1978) From of the postsynaptic density: A serial section study. J. Cell Biol.78, 36-46.
    Cotman, C.W. and Tayor, D. (1972) Isolation and structure studies on synaptic complexes from rat brain. J. Cell Biol. 55,696-711.
    Desmond, N.L. and Levy, W.B. (1986) Changes in the postsynaptic density with long-term potentiation in the dentate gyrus. J.Comp.Neurol. 253, 476-482.
    Dosemeci, A. and Reese, T.S. (1995) Effect of calpain on the composition and structure of postsynaptic density. Synapse 20, 91-97.
    Edwards, F. (1991) Neurobiology-LTP is a long term problem. Nature 350,271-272.
    Faddis, B.T., Hasbani, M.J. and Goldberg, M.P> (1997) Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro. J. Neurosci. 17, 951-959.
    Fagg, G.E. and Matus, A. (1984) Selective association of N-methyl-D-aspartate and quisqualate type of L-glutamate receptor with brain postsynaptic densities. Proc. Natl Acad. Sci. USA 81,6876-6880.
    Geinisman, Y., De Toledo-Morrell, L. and Morrell, F. (1991) Induction of longterm potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res. 566,77-88.
    Geinisman, Y., Morrell, F. and De Toledo-Morrell, L. (1987) Synapses on dendritic shafts exhibit a perforated postsynaptic density. Brain Res. 422, 352-356.
    Gomperts, S.N. (1996) Clustering membrane protein: it's all coming together with the PSD-95/SAP90 protein family. Cell 84, 659-662.
    Gray, E.G. (1959) Axo-somatic and axo-dendritic synapse of the central cortex: an electron microscope study. J. Anat. 93, 420-433.
    Harris, K.M. and Kather, S.B. (1994) Dendritic spines: cellular specialization imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341-371.
    Harris, A.S., Croall, D.E. a nd Morrow, J.S. (1988) The calmodulin- binding site in α-fordrin is near the calcium-dependent protease-I cleavage site. J. Biol. Chem. 263, 15754-15761.
    Hsueh, Y.P., Kim, E. and Sheng, M. (1997) Disulfide-linked head-to-head multimerization in the mechanism of ion channel clustering by PSD-95. Neuron 18, 803-814.
    Hwang, C., Sinskey, A.J. and Lodish, H.F. (1992) Oxidized Redox state of glutathione in the endoplasmic reticulum. Science 257, 1496-1502.
    Kelly, P.T. and Cotman, C.W. (1976) Intermolecular disulfide bonds at central nervous system synaptic junctions. Biochem. Biophys. Res. Comm. 73, 858-864.
    Kelly, P.T. and Cotman, C.W. (1978) Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J. Cell Biol. 79, 173-183.
    Kelly, P.T. and Mcguibbess, T.L. and Greengard, P. (1984) Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. USA 81, 945-949.
    Kennedy, M.B. (1997) The postsynaptic density at glutamateergic synapses. Trends Neurosci. 20, 264-268.
    Kennedy, M.B., Bennett, M.K. and Erondu, N.E. (1983) Biochemical and immunochemical evidence that the〝major postsynaptic density protein〞is a subunit of a calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. USA 80, 7357-7361.
    Kim, E., Niethammer, M., Rothschild, A., Jan, Y.N. and Sheng, M. (1995) Clustering of Sheaker-type K channel by interaction with a family of membrane-associated guanylate kinase. Nature 378, 85-88.
    Kim,T.W., Wu, K., Xu, J.L. and Black, I.B. (1992) Detection of dystrophin in the postsynaptic density of rat brain and deficiency in a mouse model of Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA 89, 11624-11644.
    Kornau, H.C., Schenker, L.T. Kennedy, M.B. and Seeberg, P.H.(1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science, 269, 1737-1740.
    Laemmli, U.K. (1970) Cleavage of structure of proteins during assembly of the head of the bacteriophage T4. Nature 227, 680-685.
    Lai, S.-L., Ling, S.-C., Kuo, L.-H., Shu, Y.-C., Chow, W.-Y., and Chang, Y.-C. (1998) Characterization of granular particles isolated from postsynaptic density. J. Neurochem. 71, 1694-1701.
    Lai, S.-L., Chiang, S.-F., Chen, I.-T., Chow, W.-Y., and Chang, Y.-C. (1999) Interprotein disulfide bonds formed during isolation process tighten the structure of the postsynaptic density. J. Neurochem. 73, 2130-2138.
    Landis, D.M.D., Weinstein, L.A. and Reese, T.S. (1987) Substructure in the postsynaptic density of Purkinje-cell dendritic spines revealed by rapid freezing and etching. Synapse 1, 552-558.
    Martone, M.E., Jones, Y.Z., Yong, S.J., Ellisman, M.H., Zivin, J.A. and Hu, B.R. (1999) Modification of postsynaptic densities after transient cerebral ischemia: A quntitative and three- dimensional ultrastructural study. J. neuroscience. 19, 1988-1997.
    Matus, A. (1981) The postsynaptic density. Trends Neurosci. 4, 51-53.
    Matus,A., Pehling, G., Ackermann, M. and Maeder, J. (1980) Brain postsynaptic densities: their relationship to glial and neuronal filaments. J. Cell Biol. 87, 346-359.
    Matus, A.I. and Taff-Jones, D.H. (1978) Morphology and molecular composition of isolated postsynaptic junctional structure. Proc. R. Soc. Lond. [Biol] 203, 135-151.
    Matus, A.I. and Walters, B.B. (1975) Ultrastructure of the synaptic junctional lattice isolated from mammalian brain. J. Neurocyto. 4, 369-375.
    Matus, A.I., Ackermann, M., Pehling,, G., Byers, H.R. and Fujiwara, K. (1982) High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl. Acad. Sci. USA 79, 7580-7594.
    Nieto-Sampedro, M., Hoff, S.F. and Cotman, C.w.(1982) Perforated postsynaptic densities: probale intermediates in synapse turnover. Proc. Natl. Acad. Sci. USA 79, 5718-5722.
    Ratner, N. and Mahler, H.R. (1983) Structure organization of filamentous protein in postsynaptic density. Biochem. 22, 2446-2453.
    Ouimet, C.C., Mcguinness, T.L. and Greengard (1984) Immunocytochemical location of calcium/calmodulin-dependent protein kinase II in rat brain. Proc. Natl. Acad. Sci. USA 81, 5604-5608.
    Peters, A., Palay, S.L. and Webster, Hdef. (1991) The Fine Structure of the Nervous System: The Neurons and Supporting Cells. 13th ed., pp160-166. Philadelphia: Saunders.
    Rees, S., Guldner, F.H. and Aitkin, L.(1985) Activity dependent plasticity of postsynaptic density structure in the ventral cochlear nucleus of the rat. Brain Res. 325, 370-374.
    Seubert, P., Baudry, M., Dudek, S. and Lynch, G. (1987) Calmodulin stimulates the degradation of brain spectrin by calpain. Synapse 1, 20-24.
    Simon, R. and Noszek, J.C. (1988) Excitatory amino acids active calpain I and induce protein breakdown in vivo. Neuron 1, 279-287.
    Suzuki, T., Okumura, N.K., Tanaka, R., Ogura, A., Nakamura, K., Kudo, Y. and Tada, T. (1993) Characterization of protein kinase C activities in postsynaptic density fractions prepared from cerebral cortex, hippocampus and cerebellum. Brain Res. 619, 69-75.
    Westenbroek, R.E., Ahlijanian, M.K. and Catteral, W.A. (1990) Clustering of L-type Ca2+ channel at the best of major densities in hippocampal pyramidal neurons. Nature 347, 281-284.
    Wu, K., Carlin, R., Sachs, L. and Siekevitz, P. (1985) Existence of a Ca2+-dependent K+ channel in synaptic membrane and postsynaptic density fractions isolated from cain cerebral cortex and cerebellum, as determined by apamin binding. Brain Res. 360, 183-194.
    郭玲后 (1994) 豬腦中後突觸質密區的結構及生化分析,國立清華大學生命科學研究所碩士論文.
    凌碩鍵 (1995) 豬腦中後突觸質密區的生化及結構分析,國立清華大學生命科學研究所碩士論文.
    姜淑芬 (1997) 豬腦中後突觸質密區雙硫鍵結蛋白之研究,國立清華大學生命科學研究所碩士論文.
    賴森林 (1998) 後突觸質密區結構之研究-蛋白質間雙硫鍵的形成與影響,國立清華大學生命科學研究所碩士論文.
    陳一統 (1999) 豬腦中後突觸質密區之裂解與重組,國立清華大學生命科學研究所碩士論文.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE