簡易檢索 / 詳目顯示

研究生: 鍾昇恆
論文名稱: Chemical Synthesis and Electrical Properties of LaFeO3
指導教授: 簡朝和
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 47
中文關鍵詞: LaFeO3soft chemical route阻抗圖譜分析SOFC
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用有機化學法合成均質的LaFeO3乾燥凝膠錯合物,由於參與反應的金屬離子能緊密接鄰,因此經過500°C煆燒熱處理後,即可生成單一純相LaFeO3粉體結晶相,煆燒粉體經過1050°C燒結熱處理後即能緻密,且相對燒結緻密度可達95%以上。將LaFeO3內部微結構模擬為3RC等效電路後,發現減少燒結體的晶界,可降低電荷載體在遷移過程裡受到的阻礙並改善導電性質。測量在不同燒結條件下的LaFeO3燒結體的導電率,研究燒結緻密性與微結構對導電性質的影響,並測其900°C下導電率最高可達0.33 S/cm,同時計算導電率活化能為20-29 kJ/mole。


    摘要 I 致謝 II 目錄 III 圖目錄 IV 一、前言 1 二、實驗方法 3 2.1 LaFeO3粉體合成與試片製備 3 2.1-1 LaFeO3 前驅物粉體合成 3 2.1-2 LaFeO3 粉體合成 3 2.1-3 LaFeO3 試片製作 4 2.1-4 燒結與脫脂 5 2.1-5 電性試片製作 5 2.2 物理性質量測 . 6 2.2-1 紅外線光譜分析 6 2.2-2 熱分析 6 2.2-3 X-ray. 繞射分析 6 2.2-4 粉體基本性質量測 7 2.2-5 相對燒結緻密度分析 7 2.2-6 微結構觀察 8 2.2-7 阻抗圖譜分析與模擬 9 2.2-8 導電率量測 9 三、結果與討論 11 3.1 基本性質 11 3.1-1 LaFeO3的粉體分析 11 3.1-2 LaFeO3的燒結分析 13 3.1-3 基本性質小結 14 3.2 電性分析 16 3.2-1 LaFeO3的微結構與阻抗圖譜分析 16 3.2-2 LaFeO3的微結構與導電性分析 18 3.2-3 電性分析小結 20 四、結論 21 五、參考文獻 22

    [1] W. R. Grove, “On Voltaic Series and the Combination of Gases by Platinum,” Philos. Mag., 14, 127-130 (1839).

    [2] P. Holtappels, U. Vogtand and T. Graule “Ceramic Materials for Advanced Solid Oxide Fuel Cells,” Adv. Eng. Mater., 7 [5], 292-302 (2005).

    [3] A. B. Stambouli and E. Traversa, “Solid Oxide Fuel Cell (SOFCs): a Review of an Environmentally Clean and Efficient Source of Energy ,”Renewable & Sustainable Energy Reviews, 6, 433-455 (2002).

    [4] K. Huang, H.Y. Lee and J. B. Goodenough, “Sr- and Ni-Doped LaCoO3 and LaFeO3 Perovskites: New Cathode Materials for Solid Oxide Fuel Cells,” J. Electrochem. soc., 145 [9], 3220-3227 (1998).

    [5] N. Q. Minh, “Ceramics Fuel Cells,” J. Am. Ceram. Soc., 76 [3], 563-588 (1993).

    [6] S. P. Jiang, “Issues on Development of (La,Sr)MnO3 Cathode for Solid Oxide Fuel Cells,” J. Power Sources, 124, 390-402 (2003).

    [7] A. Hartley, M. Sahibzada, M. Weston, I.S. Metcalfe and D.Mantzavinos, “La0.4Sr0.6Co0.2Fe0.8O3 as the Anode and Cathode for Intermediate Temperature Solid Oxide Fuel Cells,” Catal. Today, 55,197-204 (2000).

    [8] A. Mai, V. A. C. Haanappel, S. Uhlenbruck, F. Tietz, and D. Stover, “Ferrite-based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells: Part I. Variation of Composition,” Solid State Ionics, 176, 1341-1350 (2005).

    [9] J. Mizusaki, T. Sasamoto, W. R. Cannon, and H. K. Bowen, “Electronic Conductivity, Seebeck Coefficient, and Defect Structure of La1-xSrxFeO3 (x=0.l, 0.25),” J. Am. Ceram. Soc., 66 [4], 247-252 (1983).

    [10] G. Zhu, X. Fang, C. Xia, and X. Liu, “Preparation and Electrical Properties of La0.4Sr0.6Ni0.2Fe0.8O3 Using a Glycine Nitrate Process,” Ceram. Int., 31, 115-119 (2005).

    [11] I. Warnhus, P. E. Vullum, R. Holmestad, T. Grande, and K. Wiik, “Electrical Properties of Polycrystalline LaFeO3, Part I: Experimental Results and the Qualitative Role of Schottky Defects,” Solid State Ionics, 176, 2783-2790 (2005).

    [12] I. Warnhus, T. Grande, and K. Wiik, “Electronic Properties of Polycrystalline LaFeO3, Part II: Defect Modeling Including Schottky Defects,” Solid State Ionics, 176, 2609-2616 (2005).

    [13] H. Kominami, H. Inoue, S. Konishi, and Y. Kera, “Synthesis of Perovskite-Type Lanthanum Iron Oxide by Glycothermal Reaction of a Lanthanum-Iron Precursor,” J. Am. Ceram. Soc., 85 [9], 2148-2150 (2002).

    [14] G. Shabbir, A. H. Qureshi, and K. Saeed, “Nano-Crystalline LaFeO3 Powders Synthesized by the Citrate-gel Method,” Mater. Lett., 60, 3706-3709 (2006).

    [15] Y. Sadaoka, H. Aono, E. Traversa, and M. Sakamoto, “Thermal Evolution of Nanosized LaFeO3 Powders from a Heteronuclear Complex, La[Fe(CN)6]nH2O,” J. Alloys Comp., 278, 135-141 (1998).

    [16] E. Traversa, P. Nunziante, L. Sangaletti, B. Allieri, K. E. Depero, H. Aono, and Y. Sadaoka, “Synthesis and Structural Characterization of Trimetallic Perovskite-Type Rare-Earth Orthoferrites, LaxSm1-xFeO3,” J. Am. Cream. Soc., 83 [5], 1087-1092 (2000).

    [17] G. Xiong, Z. Zhi, X. Yang, L. Lu, and X. Wang, “Characterization of Perovskite-Type LaCoO3 Nanocrystals Prepared by a Stearic Acid Sol-Gel Process,” J. Mater. Sci. Lett., 16, 1064-1068 (1997).

    [18] S. M. Selbach, M. Einarsrud, T. Tybell, and T. Grande, “Synthesis of BiFeO3 by Wet Chemical Methods,” J. Am. Ceram. Soc., 90 [11], 3430-3434 (2007).

    [19] S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, “Low-Temperature Synthesis of Nanosized Bismuth Ferrite by Soft Chemical Route,” J. Am. Ceram. Soc., 88 [5], 1349-1352 (2005).

    [20] S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, “Low Temperature Synthesis of Bismuth Ferrite Nanoparticles by a ferrioxalate precursor method,” Mat. Res. Bull., 40, 2073-2079 (2005).

    [21] J. R. Macdonald, Impedance Spectroscopy, Wiley, Chichester, (1987).

    [22] J. T. S. Irvine, D. C. Sinclair, and A. R. West, “Electroceramics: Characterization by Impedance Spectroscopy,” Adv. Mater., 2 [3], 132-138 (1990).

    [23] H. Chazono and H. Kishi, “Dc-Electrical Degradation of BT-Based Material for Multilayer Ceramics Capacitor with Ni Internal Electrode: Impedance Analysis and Microstructure,” Jpn. J. Appl. Phys., 40, 5624-5629 (2001).

    [24] F. D. Morrison, D. C. Sinclair, and A. R. West, “Characterization of Lanthanum-Doped Barium Titanate Ceramics Using Impedance Spectroscopy,” J. Am. Ceram. Soc., 84 [3], 531–538 (2001).

    [25] G. Socrates, Infrared Characteristic Group Frequencies-Tables and Charts, 3rd ed., John Wiley and Sons, 1994.

    [26] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th ed., John Wiley and Sons, 1997.

    [27] J. Mizusaki, T. Sasamoto, W. R. Cannon, and H. K. Bowen, “Electronic Conductivity, Seebeck Coefficient, and Defect Structure of LaFeO3,” J. Am. Ceram. Soc., 65 [8], 363-368 (1982).

    [28] L. B Kong and Y. S. Shen, “Gas-Sensing Property and Mechanism of CaxLa1-xFeO3 Ceramics,” Sensors and Actuators B, 30, 217-221 (1996).

    [29] M. H. Hung, M. V. M. Rao, and D. S. Tsai, “Microstructural and Electrical Properties of Calcium Substituted LaFeO3 as SOFC Cathode,” Mater. Chem. Phys., 101, 297-302 (2007).

    [30] D. Kuscer, M. Hrovat, J. Holc, S. Bernik, and D. Kolar, “Some Characteristics of Al2O3- and CaO-Midified LaFeO3-based Cathode Materials for Solid Oxide Fuel Cells,” J. Power Sources, 61, 161-165 (1996).

    [31] R. C. Buchanan, “Highly Conductive Ceramics”; pp. 87-140 in Ceramic Materials for Electronics, 3rd edition, M. Dekker Press, 2004.
    [32] J. B. Goodenough, “Metallic Oxides”; pp. 145-399 in Progress in Solid State Chemistry, Vol. 5, Pergamon, Oxford, 1971.

    [33] D. P. Karim and A. T. Aldred, “Localized Level Hopping Transport in La(Sr)CrO3,”Phys. Rev. B, 20 [6], 2255-2263 (1979).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE