研究生: |
鍾昇恆 |
---|---|
論文名稱: |
Chemical Synthesis and Electrical Properties of LaFeO3 |
指導教授: | 簡朝和 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | LaFeO3 、soft chemical route 、阻抗圖譜分析 、SOFC |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用有機化學法合成均質的LaFeO3乾燥凝膠錯合物,由於參與反應的金屬離子能緊密接鄰,因此經過500°C煆燒熱處理後,即可生成單一純相LaFeO3粉體結晶相,煆燒粉體經過1050°C燒結熱處理後即能緻密,且相對燒結緻密度可達95%以上。將LaFeO3內部微結構模擬為3RC等效電路後,發現減少燒結體的晶界,可降低電荷載體在遷移過程裡受到的阻礙並改善導電性質。測量在不同燒結條件下的LaFeO3燒結體的導電率,研究燒結緻密性與微結構對導電性質的影響,並測其900°C下導電率最高可達0.33 S/cm,同時計算導電率活化能為20-29 kJ/mole。
[1] W. R. Grove, “On Voltaic Series and the Combination of Gases by Platinum,” Philos. Mag., 14, 127-130 (1839).
[2] P. Holtappels, U. Vogtand and T. Graule “Ceramic Materials for Advanced Solid Oxide Fuel Cells,” Adv. Eng. Mater., 7 [5], 292-302 (2005).
[3] A. B. Stambouli and E. Traversa, “Solid Oxide Fuel Cell (SOFCs): a Review of an Environmentally Clean and Efficient Source of Energy ,”Renewable & Sustainable Energy Reviews, 6, 433-455 (2002).
[4] K. Huang, H.Y. Lee and J. B. Goodenough, “Sr- and Ni-Doped LaCoO3 and LaFeO3 Perovskites: New Cathode Materials for Solid Oxide Fuel Cells,” J. Electrochem. soc., 145 [9], 3220-3227 (1998).
[5] N. Q. Minh, “Ceramics Fuel Cells,” J. Am. Ceram. Soc., 76 [3], 563-588 (1993).
[6] S. P. Jiang, “Issues on Development of (La,Sr)MnO3 Cathode for Solid Oxide Fuel Cells,” J. Power Sources, 124, 390-402 (2003).
[7] A. Hartley, M. Sahibzada, M. Weston, I.S. Metcalfe and D.Mantzavinos, “La0.4Sr0.6Co0.2Fe0.8O3 as the Anode and Cathode for Intermediate Temperature Solid Oxide Fuel Cells,” Catal. Today, 55,197-204 (2000).
[8] A. Mai, V. A. C. Haanappel, S. Uhlenbruck, F. Tietz, and D. Stover, “Ferrite-based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells: Part I. Variation of Composition,” Solid State Ionics, 176, 1341-1350 (2005).
[9] J. Mizusaki, T. Sasamoto, W. R. Cannon, and H. K. Bowen, “Electronic Conductivity, Seebeck Coefficient, and Defect Structure of La1-xSrxFeO3 (x=0.l, 0.25),” J. Am. Ceram. Soc., 66 [4], 247-252 (1983).
[10] G. Zhu, X. Fang, C. Xia, and X. Liu, “Preparation and Electrical Properties of La0.4Sr0.6Ni0.2Fe0.8O3 Using a Glycine Nitrate Process,” Ceram. Int., 31, 115-119 (2005).
[11] I. Warnhus, P. E. Vullum, R. Holmestad, T. Grande, and K. Wiik, “Electrical Properties of Polycrystalline LaFeO3, Part I: Experimental Results and the Qualitative Role of Schottky Defects,” Solid State Ionics, 176, 2783-2790 (2005).
[12] I. Warnhus, T. Grande, and K. Wiik, “Electronic Properties of Polycrystalline LaFeO3, Part II: Defect Modeling Including Schottky Defects,” Solid State Ionics, 176, 2609-2616 (2005).
[13] H. Kominami, H. Inoue, S. Konishi, and Y. Kera, “Synthesis of Perovskite-Type Lanthanum Iron Oxide by Glycothermal Reaction of a Lanthanum-Iron Precursor,” J. Am. Ceram. Soc., 85 [9], 2148-2150 (2002).
[14] G. Shabbir, A. H. Qureshi, and K. Saeed, “Nano-Crystalline LaFeO3 Powders Synthesized by the Citrate-gel Method,” Mater. Lett., 60, 3706-3709 (2006).
[15] Y. Sadaoka, H. Aono, E. Traversa, and M. Sakamoto, “Thermal Evolution of Nanosized LaFeO3 Powders from a Heteronuclear Complex, La[Fe(CN)6]nH2O,” J. Alloys Comp., 278, 135-141 (1998).
[16] E. Traversa, P. Nunziante, L. Sangaletti, B. Allieri, K. E. Depero, H. Aono, and Y. Sadaoka, “Synthesis and Structural Characterization of Trimetallic Perovskite-Type Rare-Earth Orthoferrites, LaxSm1-xFeO3,” J. Am. Cream. Soc., 83 [5], 1087-1092 (2000).
[17] G. Xiong, Z. Zhi, X. Yang, L. Lu, and X. Wang, “Characterization of Perovskite-Type LaCoO3 Nanocrystals Prepared by a Stearic Acid Sol-Gel Process,” J. Mater. Sci. Lett., 16, 1064-1068 (1997).
[18] S. M. Selbach, M. Einarsrud, T. Tybell, and T. Grande, “Synthesis of BiFeO3 by Wet Chemical Methods,” J. Am. Ceram. Soc., 90 [11], 3430-3434 (2007).
[19] S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, “Low-Temperature Synthesis of Nanosized Bismuth Ferrite by Soft Chemical Route,” J. Am. Ceram. Soc., 88 [5], 1349-1352 (2005).
[20] S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, “Low Temperature Synthesis of Bismuth Ferrite Nanoparticles by a ferrioxalate precursor method,” Mat. Res. Bull., 40, 2073-2079 (2005).
[21] J. R. Macdonald, Impedance Spectroscopy, Wiley, Chichester, (1987).
[22] J. T. S. Irvine, D. C. Sinclair, and A. R. West, “Electroceramics: Characterization by Impedance Spectroscopy,” Adv. Mater., 2 [3], 132-138 (1990).
[23] H. Chazono and H. Kishi, “Dc-Electrical Degradation of BT-Based Material for Multilayer Ceramics Capacitor with Ni Internal Electrode: Impedance Analysis and Microstructure,” Jpn. J. Appl. Phys., 40, 5624-5629 (2001).
[24] F. D. Morrison, D. C. Sinclair, and A. R. West, “Characterization of Lanthanum-Doped Barium Titanate Ceramics Using Impedance Spectroscopy,” J. Am. Ceram. Soc., 84 [3], 531–538 (2001).
[25] G. Socrates, Infrared Characteristic Group Frequencies-Tables and Charts, 3rd ed., John Wiley and Sons, 1994.
[26] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th ed., John Wiley and Sons, 1997.
[27] J. Mizusaki, T. Sasamoto, W. R. Cannon, and H. K. Bowen, “Electronic Conductivity, Seebeck Coefficient, and Defect Structure of LaFeO3,” J. Am. Ceram. Soc., 65 [8], 363-368 (1982).
[28] L. B Kong and Y. S. Shen, “Gas-Sensing Property and Mechanism of CaxLa1-xFeO3 Ceramics,” Sensors and Actuators B, 30, 217-221 (1996).
[29] M. H. Hung, M. V. M. Rao, and D. S. Tsai, “Microstructural and Electrical Properties of Calcium Substituted LaFeO3 as SOFC Cathode,” Mater. Chem. Phys., 101, 297-302 (2007).
[30] D. Kuscer, M. Hrovat, J. Holc, S. Bernik, and D. Kolar, “Some Characteristics of Al2O3- and CaO-Midified LaFeO3-based Cathode Materials for Solid Oxide Fuel Cells,” J. Power Sources, 61, 161-165 (1996).
[31] R. C. Buchanan, “Highly Conductive Ceramics”; pp. 87-140 in Ceramic Materials for Electronics, 3rd edition, M. Dekker Press, 2004.
[32] J. B. Goodenough, “Metallic Oxides”; pp. 145-399 in Progress in Solid State Chemistry, Vol. 5, Pergamon, Oxford, 1971.
[33] D. P. Karim and A. T. Aldred, “Localized Level Hopping Transport in La(Sr)CrO3,”Phys. Rev. B, 20 [6], 2255-2263 (1979).