研究生: |
陳勇任 Chen, Yung-Jen |
---|---|
論文名稱: |
藉由帶有分支過程的偏微分方程對物種突變進行數值模擬 Numerical Simulation for Species Mutation by Partial Differential Equations with Branching Process |
指導教授: |
朱家杰
Chu, Chia-Chieh |
口試委員: |
蔡志強
Tsai, Je-Chiang 林得勝 Lin, Te-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 擴散 、突變 、分支過程 |
外文關鍵詞: | Diffusion, Mutation, Branching Process |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從過往到現在,細菌是處處存在在我們的世界當中。然而世界一直
在改變,想當然的細菌也是會隨著空間環境的不同而適應當下的環境,
並且透過遷移的方式去找尋適合自己的生長環境,如果無法遷移則會
透過突變的方式來達到能夠適應當前生長環境。
首先我們會驗證運用離散突變項的技巧來替代規律繁殖的方法是否
可實施在一個物種的常微分方程模型上,並且我們去比較彼此之間的
差異。再者,我們運用相同方法套用在兩個物種的常微分方程模型下,
並且我們去比較彼此之間的差異。最後我們藉由這種方法來建構偏微
分方程模型,並且透過這個模型來模擬出細菌在微生物進化和生長場
(MEGA) 上的行為。另外我們透過不同的成長率以及不同的擴散率下
去比較其差異。
From the past to the present, bacteria are everywhere in our world. However, the world is always changing. Naturally, bacteria will adapt to the current environment according to different spatial environments, and find a suitable growth environment through migration. If they cannot migrate, they will
adapt to the current environment through mutations.
First, we will verify whether the technique of using discrete mutation
terms instead of regular reproduction can be implemented on the ordinary
differential equation model of a species, and we will compare the differences
between them. Furthermore, we apply the same method to the ordinary differential equation model of the two species, and we compare the differences
between them. Finally, we use this method to construct a partial differential
equation model, and use this model to simulate the behavior of bacteria in the
microbial evolution and growth arena(MEGA). In addition, we compare the
differences through different growth rates and different diffusion rates.
[1] Kawecki T. J. Lenski R. E. Ebert D. Hollis B. Olivieri I. Whitlock M. C. Experimental
evolution. Trends in ecology evolution, 27:547–560, 2012.
[2] Dragosits M. Mattanovich D. Adaptive laboratory evolution–principles and applications for biotechnology. Microbial cell factories, 12:1–17, 2013.
[3] Conrad T. M. Lewis N. E. Palsson B. Ø. Microbial laboratory evolution in the era of
genomescale science. Molecular systems biology, 7:509, 2011.
[4] Portnoy V. A. Bezdan D. Zengler K. Adaptive laboratory evolution —harnessing
the power of biology for metabolic engineering. Current opinion in biotechnology,
22:590–594, 2011.
[5] Alekshun M. N. Levy S. B. Molecular mechanisms of antibacterial multidrug resistance. Current opinion in biotechnology, 128:1037–1050, 2007.
[6] Hermsen R. Deris J. B. Hwa T. On the rapidity of antibiotic resistance evolution
facilitated by a concentration gradient. Proceedings of the National Academy of
Sciences, 109:10775–10780, 2012.
[7] Michael Baym Tami D.Lieberman Eric D. Kelsic Remy Chait Rotem Gross Idan
Yelin Roy Kishony. Spatiotemporal microbial evolution on antibiotic landscapes.
Science, 353:1147–1151, 2016.
[8] Hegreness M. Shoresh N. Damian D. Hartl D. Kishony R. Accelerated evolution
of resistance in multidrug environments. Proceedings of the National Academy of
Sciences, 105:13977–13981, 2008.
[9] G. Liao D. Kim H. Robin K. Tung C. K. Austin R. H. Zhang Q. Lambert. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments.
Science, 333:1764–1767, 2011.
[10] Dekel E. Alon U. Optimality and evolutionary tuning of the expression level of a
protein. Nature, 436:588–592, 2005.
[11] Hartl D. L. Clark A. G. Clark A. G. The simple chemostat with wall growth. Sunderland, MA: Sinauer associates., 116, 1997.
[12] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions. The
Journal of Physical Chemistry, 81:2340–2361, 1977.
[13] Daniel T Gillespie. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of computational physics, 22:403–
434, 1976.
[14] Pilyugin S. S. Waltman P. The simple chemostat with wall growth. SIAM Journal
on Applied Mathematics, 59:1552–1572, 2011.
[15] Hsu S. B. Yang Y. T. Theory of a microfluidic serial dilution bioreactor for growth
of planktonic and biofilm populations. Journal of mathematical biology, 72:1401–
1427, 2016.
[16] Giles M. B. Multilevel monte carlo path simulation. Operations research, 56:607–
617, 2008.