簡易檢索 / 詳目顯示

研究生: 周仁鈞
Chou, Jen-Chun
論文名稱: 設計與製造金屬氧化物應用在光電化學分解水與超電容
Design and fabrication of metal oxides for photoelectrochemical water splitting and supercapacitors
指導教授: 甘炯耀
Gan, Jon-Yiew
口試委員: 黃振昌
李紫原
裘性天
陳金銘
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 136
中文關鍵詞: 金屬氧化物光電化學分解水超電容
外文關鍵詞: metal oxide, photoelectrochemical water splitting, supercapacitors
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光電化學分解水是具有前瞻性的再生能源技術。它可以直接將太陽能轉換成可儲存和乾淨的燃料,氫氣。然而,光電化學分解水的光-氫轉換效率仍然不高(< 1%),主要是因為光陽極無法產生足夠的光伏和光電流。清楚的瞭解電洞的介穩態費米能階在能帶中的形貌可以預測光伏和光電流。這篇論文中,將透過水溶液成長金屬氧化物奈米線作為光陽極來檢測光電化學分解水的特性。本研究著重在(i)計算光陽極材料的電洞濃度、(ii)建構一系列隨偏壓變化的能帶圖來總結光電流產生的原因、以及(iii)透過後置熱處理來降低鈦摻雜氧化鐵的電洞傳導和傳遞電阻以增進光水解表現。
    除了再生能源的產生,能量的儲存也日漸重要。超電容是一種具有前瞻性的儲能技術。它可以在幾秒內快速的充放電,因此可以提供電動車瞬間的爆發力。超電容的瓶頸在於成本過高,尋求低成本高能量密度的超電容材料是發展重點。二氧化錳是一個具有潛力的超電容材料因為低成本和高理論電容值。但是他本身的載子傳導限制其超電容的表現,本論文透過高表面積、高導電度的二氧化錳奈米柱當作電纜,提供二氧化錳本身缺乏的電荷傳導性,其電容值表現在1 M Na2SO4,掃描速度2mV s-1,可達到793 F g-1。


    Photoelectrochemical (PEC) water splitting is one of the most promising renewable energy technique, which directly converts solar energy into storable and clean fuel, hydrogen. However, the solar-hydrogen efficiency (SHE) of PEC cell remains limited (< 1%) because of the insufficient photovoltaic and photocurrent generation of photoanodes. A clear understanding the hole quasi Fermi level (EFp) profile in the band gap is important to predict the photovoltaic and photocurrent. In this work, the solution growth metal oxide nanowires (NWs) were prepared as photoanodes for PEC investigation. My research is focused on (i) calculating hole concentration of photoanodes (TiO2 and α-Fe2O3), (ii) establishing a series of band diagrams to summarize the photocurrent generation at various bias potential, and (iii) reducing the hole transport and transfer resistance by post annealing Ti doped α-Fe2O3 for enhanced PEC performance.
    In addition to the energy production, the development of energy storage is also important. Supercapacitors (SCs) are one of promising energy storage technique. It can be fully charged and discharged in seconds; as a consequence, it can provide the instant power for electric vehicles. The limit of SCs is the high cost. Thus, a low cost and high power density of SCs is greatly required. MnO2 is a potential candidate of SCs because of its low cost and high theoretical specific capacitance (1370 F g-1). However, the poor electrical conductivity limits its capacitive performance. In this work, the high surface area and high conductive RuO2 NRs were used as substrate to improve the charge transport of MnO2. High specific capacitance of 793 F g-1 was achieved at a scan rate of 2 mV s-1 in 1 M Na2SO4 aqueous solution.

    Chapter 1 Introduction and Purpose 1 Chapter 2 Literature Review 4 2.1 Photoelectrochemical (PEC) water splitting 4 2.1.1 Operating principle of PEC cell 4 2.1.2 Solar-hydrogen efficiency (SHE) 5 2.1.3 Theoretical solar-hydrogen efficiency 7 2.1.4 Materials for PEC water splitting 8 2.2 Supercapacitors (SCs) 14 2.2.1 Introduction of supercapacitors 14 2.2.2 Capacitive performance calculation 16 2.2.3 Types of supercapacitors 18 2.2.4 Metal oxide based supercapacitors 19 Chapter 3 Photoexcitation of TiO2 photoanode in water splitting 42 3.1 Abstract 42 3.2 Introduction 42 3.3 Experimental details 43 3.3.1 Preparation of TiO2 NRs. 43 3.3.2 Characterizations. 44 3.3.3 PEC measurements. 44 3.4 Results and discussion 45 3.5 Conclusions 50 Chapter 4 Effect of bulk doping and surface-trapped states on water splitting with hematite photoanodes 55 4.1 Abstract 55 4.2 Introduction 55 4.3 Experimental section 56 4.3.1 Fe2O3 films prepared by anodic electrodeposition 56 4.3.2 Fe2O3 films prepared by Fe oxidation 57 4.3.3 Characterizations 57 4.3.4 PEC measurements 58 4.4 Results and discussion 58 4.5 Conclusions 65 4.6 Supplementary Information 80 Chapter 5 Post annealing to reduce the charge transfer resistance of Ti doped hematite photoanodes for enhanced photoelectrochemical water splitting 81 5.1 Abstract 81 5.2 Introduction 81 5.3 Experimental 83 5.3.1 Hematite NR film synthesis 83 5.3.2 Doping process 83 5.3.3 Characterization 84 5.3.4 PEC and IPCE measurements 85 5.4 Results and discussion 85 5.5 Conclusions 95 Chapter 6 RuO2/MnO2 core/shell nanorods for supercapcitors 111 6.1 Abstract 111 6.2 Introduction 111 6.3 Experimental section 112 6.3.1 Preparation of RuO2 nanorods 112 6.3.2 MnO2 coating 113 6.3.3 Characterizations 113 6.3.4 Electrochemical measurements 114 6.4 Results and discussion 114 6.5 Conclusions 118 Chapter 7 Conclusions 127 7.1 PEC water splitting 127 7.2 Supercapacitors 128 Appendix: Ru usage and price in SCs 129 References 131 Curriculum Vitae 135

    1. van de Krol, R.; Liang, Y.; Schoonman, J. J. Mater. Chem. 2008, 18, (20), 2311-2320.
    2. Jacobsson, J. T.; Fjallstrom, V.; Edoff, M.; Edvinsson, T. Energy & Environmental Science 2014.
    3. Khaselev, O.; Bansal, A.; Turner, J. A. Int. J. Hydrogen Energy 2001, 26, (2), 127-132.
    4. Gratzel, M. Nature 2001, 414, (6861), 338-344.
    5. Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.; Grey, I. E.; Horne, M. D.; Glasscock, J. A. Int. J. Hydrogen Energy 2006, 31, (14), 1999-2017.
    6. Sun, J.; Zhong, D. K.; Gamelin, D. R. Energy & Environmental Science 2010, 3, (9), 1252-1261.
    7. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, (11), 6446-6473.
    8. Brillet, J.; Yum, J.-H.; Cornuz, M.; Hisatomi, T.; Solarska, R.; Augustynski, J.; Graetzel, M.; Sivula, K. Nat Photon 2012, 6, (12), 824-828.
    9. Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor, G. K.; Feng, X.; Paulose, M.; Seabold, J. A.; Choi, K.-S.; Grimes, C. A. The Journal of Physical Chemistry C 2009, 113, (16), 6327-6359.
    10. Reference electrode, W. http://en.wikipedia.org/wiki/Reference_electrode.
    11. instruments, G. http://www.gamry.com/products/accessories/reference-electrodes/.
    12. Weber, M. F.; Dignam, M. J. J. Electrochem. Soc. 1984, 131, (6), 1258-1265.
    13. Bolton, J. R.; Strickler, S. J.; Connolly, J. S. Nature 1985, 316, (6028), 495-500.
    14. Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, (1), 253-278.
    15. Lin, Y.; Yuan, G.; Liu, R.; Zhou, S.; Sheehan, S. W.; Wang, D. Chem. Phys. Lett. 2011, 507, (4-6), 209-215.
    16. Sun, W.-T.; Yu, Y.; Pan, H.-Y.; Gao, X.-F.; Chen, Q.; Peng, L.-M. J. Am. Chem. Soc. 2008, 130, (4), 1124-1125.
    17. Wang, H.; Bai, Y.; Zhang, H.; Zhang, Z.; Li, J.; Guo, L. The Journal of Physical Chemistry C 2010, 114, (39), 16451-16455.
    18. Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, (7), 3026-3033.
    19. Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Nano Lett. 2008, 8, (11), 3781-3786.
    20. Cho, I. S.; Chen, Z.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. Nano Lett. 2011, 11, (11), 4978-4984.
    21. Xu, M.; Da, P.; Wu, H.; Zhao, D.; Zheng, G. Nano Lett. 2012, 12, (3), 1503-1508.
    22. Hwang, Y. J.; Hahn, C.; Liu, B.; Yang, P. ACS Nano 2012, 6, (6), 5060-5069.
    23. Tang, J.; Durrant, J. R.; Klug, D. R. J. Am. Chem. Soc. 2008, 130, (42), 13885-13891.
    24. Cowan, A. J.; Barnett, C. J.; Pendlebury, S. R.; Barroso, M.; Sivula, K.; Grätzel, M.; Durrant, J. R.; Klug, D. R. J. Am. Chem. Soc. 2011, 133, (26), 10134-10140.
    25. Pendlebury, S. R.; Cowan, A. J.; Barroso, M.; Sivula, K.; Ye, J.; Gratzel, M.; Klug, D. R.; Tang, J.; Durrant, J. R. Energy & Environmental Science 2012, 5, (4), 6304-6312.
    26. Reichman, J. Appl. Phys. Lett. 1980, 36, (7), 574-577.
    27. Sivula, K.; Le Formal, F.; Grätzel, M. ChemSusChem 2011, 4, (4), 432-449.
    28. Kennedy, J. H.; Frese, K. W. J. Electrochem. Soc. 1978, 125, (5), 709-714.
    29. Pendlebury, S. R.; Barroso, M.; Cowan, A. J.; Sivula, K.; Tang, J.; Gratzel, M.; Klug, D.; Durrant, J. R. Chem. Commun. 2011, 47, (2), 716-718.
    30. Upul Wijayantha, K. G.; Saremi-Yarahmadi, S.; Peter, L. M. PCCP 2011, 13, (12), 5264-5270.
    31. Peter, L. M.; Wijayantha, K. G. U.; Tahir, A. A. Faraday Discuss. 2012, 155, (0), 309-322.
    32. Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Hamann, T.; Bisquert, J. J. Am. Chem. Soc. 2012, 134, (9), 4294-4302.
    33. Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. Energy & Environmental Science 2012.
    34. Vayssieres, L.; Beermann, N.; Lindquist, S.-E.; Hagfeldt, A. Chem. Mater. 2000, 13, (2), 233-235.
    35. Vayssieres, L.; Sathe, C.; Butorin, S. M.; Shuh, D. K.; Nordgren, J.; Guo, J. Adv. Mater. 2005, 17, (19), 2320-2323.
    36. Mohapatra, S. K.; John, S. E.; Banerjee, S.; Misra, M. Chem. Mater. 2009, 21, (14), 3048-3055.
    37. Kay, A.; Cesar, I.; Grätzel, M. J. Am. Chem. Soc. 2006, 128, (49), 15714-15721.
    38. Cesar, I.; Kay, A.; Gonzalez Martinez, J. A.; Grätzel, M. J. Am. Chem. Soc. 2006, 128, (14), 4582-4583.
    39. Wang, G.; Ling, Y.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, (8), 3503-3509.
    40. Ling, Y.; Wang, G.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, (5), 2119-2125.
    41. Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. J. Am. Chem. Soc. 2010, 132, (21), 7436-7444.
    42. Cheng, W.; He, J.; Sun, Z.; Peng, Y.; Yao, T.; Liu, Q.; Jiang, Y.; Hu, F.; Xie, Z.; He, B.; Wei, S. The Journal of Physical Chemistry C 2012, 116, (45), 24060-24067.
    43. Kleiman-Shwarsctein, A.; Hu, Y.-S.; Forman, A. J.; Stucky, G. D.; McFarland, E. W. The Journal of Physical Chemistry C 2008, 112, (40), 15900-15907.
    44. Saremi-Yarahmadi, S.; Wijayantha, K. G. U.; Tahir, A. A.; Vaidhyanathan, B. The Journal of Physical Chemistry C 2009, 113, (12), 4768-4778.
    45. Franking, R.; Li, L.; Lukowski, M. A.; Meng, F.; Tan, Y.; Hamers, R. J.; Jin, S. Energy & Environmental Science 2013, 6, (2), 500-512.
    46. Glasscock, J. A.; Barnes, P. R. F.; Plumb, I. C.; Savvides, N. The Journal of Physical Chemistry C 2007, 111, (44), 16477-16488.
    47. Hahn, N. T.; Mullins, C. B. Chem. Mater. 2010, 22, (23), 6474-6482.
    48. Zandi, O.; Klahr, B. M.; Hamann, T. W. Energy & Environmental Science 2013, 6, (2), 634-642.
    49. Service, R. F. Science 2006, 313, (5789), 902.
    50. Simon, P.; Gogotsi, Y. Nat Mater 2008, 7, (11), 845-854.
    51. Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W. Adv. Mater. 2012, 24, (38), 5166-5180.
    52. Miller, J. R.; Simon, P. Science 2008, 321, (5889), 651-652.
    53. Qu, D.; Shi, H. J. Power Sources 1998, 74, (1), 99-107.
    54. Shinomiya, T.; Gupta, V.; Miura, N. Electrochim. Acta 2006, 51, (21), 4412-4419.
    55. Yan, J.; Khoo, E.; Sumboja, A.; Lee, P. S. ACS Nano 2010, 4, (7), 4247-4255.
    56. Lokhande, C. D.; Dubal, D. P.; Joo, O.-S. Current Applied Physics 2011, 11, (3), 255-270.
    57. Zheng, J. P.; Cygan, P. J.; Jow, T. R. J. Electrochem. Soc. 1995, 142, (8), 2699-2703.
    58. Cong, H.-P.; Ren, X.-C.; Wang, P.; Yu, S.-H. Energy & Environmental Science 2013, 6, (4), 1185-1191.
    59. Gupta, V.; Gupta, S.; Miura, N. J. Power Sources 2008, 175, (1), 680-685.
    60. Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. Chem. Soc. Rev. 2011, 40, (3), 1697-1721.
    61. Lei, Z.; Zhang, J.; Zhao, X. S. J. Mater. Chem. 2012, 22, (1), 153-160.
    62. Wei, D.; Scherer, M. R. J.; Bower, C.; Andrew, P.; Ryhänen, T.; Steiner, U. Nano Lett. 2012, 12, (4), 1857-1862.
    63. Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nat Nano 2011, 6, (4), 232-236.
    64. He, Y.-B.; Li, G.-R.; Wang, Z.-L.; Su, C.-Y.; Tong, Y.-X. Energy & Environmental Science 2011, 4, (4), 1288-1292.
    65. Dong, S.; Chen, X.; Gu, L.; Zhou, X.; Li, L.; Liu, Z.; Han, P.; Xu, H.; Yao, J.; Wang, H.; Zhang, X.; Shang, C.; Cui, G.; Chen, L. Energy & Environmental Science 2011, 4, (9), 3502-3508.
    66. Kai, K.; Kobayashi, Y.; Yamada, Y.; Miyazaki, K.; Abe, T.; Uchimoto, Y.; Kageyama, H. J. Mater. Chem. 2012, 22, (29), 14691-14695.
    67. Lu, X.; Zhai, T.; Zhang, X.; Shen, Y.; Yuan, L.; Hu, B.; Gong, L.; Chen, J.; Gao, Y.; Zhou, J.; Tong, Y.; Wang, Z. L. Adv. Mater. 2012, 24, (7), 938-944.
    68. Bao, L.; Zang, J.; Li, X. Nano Lett. 2011, 11, (3), 1215-1220.
    69. Hu, L.; Chen, W.; Xie, X.; Liu, N.; Yang, Y.; Wu, H.; Yao, Y.; Pasta, M.; Alshareef, H. N.; Cui, Y. ACS Nano 2011, 5, (11), 8904-8913.
    70. Kim, J.-H.; Lee, K. H.; Overzet, L. J.; Lee, G. S. Nano Lett. 2011, 11, (7), 2611-2617.
    71. Fujishima, A.; Honda, K. Nature 1972, 238, (5358), 37-38.
    72. Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Chem. Rev. 2010, 110, (11), 6503-6570.
    73. Crawford, S.; Thimsen, E.; Biswas, P. J. Electrochem. Soc. 2009, 156, (5), H346-H351.
    74. Yang, M.-H.; Chen, T.-T.; Wang, Y.-S.; Chiu, H.-T.; Lee, C.-Y. J. Mater. Chem. 2011, 21, (46), 18738-18743.
    75. Zhang, H.; Liu, X.; Li, Y.; Sun, Q.; Wang, Y.; Wood, B. J.; Liu, P.; Yang, D.; Zhao, H. J. Mater. Chem. 2012, 22, (6), 2465-2472.
    76. Fabregat-Santiago, F.; Garcia-Belmonte, G.; Bisquert, J.; Bogdanoff, P.; Zaban, A. J. Electrochem. Soc. 2003, 150, (6), E293-E298.
    77. Krol, R., Photoelectrochemical Hydrogen Production,Electronic Materials: Science & Technology. Springer: New York, 2012; p 13-67.
    78. Sato, N., Electrochemistry at Metal and Semiconductor Electrodes. Elsevier: Amsterdam, 1998; p 171.
    79. Cheng, X. F.; Leng, W. H.; Liu, D. P.; Xu, Y. M.; Zhang, J. Q.; Cao, C. N. The Journal of Physical Chemistry C 2008, 112, (23), 8725-8734.
    80. Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Small 2009, 5, (1), 104-111.
    81. Mahajan, V. K.; Mohapatra, S. K.; Misra, M. Int. J. Hydrogen Energy 2008, 33, (20), 5369-5374.
    82. Meier, D. L.; Hwang, J. M.; Campbell, R. B. Electron Devices, IEEE Transactions on 1988, 35, (1), 70-79.
    83. Fuke, N.; Fukui, A.; Islam, A.; Komiya, R.; Yamanaka, R.; Harima, H.; Han, L. Y. Sol. Energy Mater. Sol. Cells 2009, 93, (6-7), 720-724.
    84. Weng, Y.-X.; Wang, Y.-Q.; Asbury, J. B.; Ghosh, H. N.; Lian, T. The Journal of Physical Chemistry B 1999, 104, (1), 93-104.
    85. Mulmudi, H. K.; Mathews, N.; Dou, X. C.; Xi, L. F.; Pramana, S. S.; Lam, Y. M.; Mhaisalkar, S. G. Electrochem. Commun. 2011, 13, (9), 951-954.
    86. Klahr, B.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Hamann, T. W. Energy & Environmental Science 2012, 5, (6), 7626-7636.
    87. Spray, R. L.; Choi, K.-S. Chem. Mater. 2009, 21, (15), 3701-3709.
    88. Enache, C. S.; Liang, Y. Q.; van de Krol, R. Thin Solid Films 2011, 520, (3), 1034-1040.
    89. Beydoun, D.; Amal, R.; Low, G. K. C.; McEvoy, S. The Journal of Physical Chemistry B 2000, 104, (18), 4387-4396.
    90. Khan, S. U. M.; Akikusa, J. The Journal of Physical Chemistry B 1999, 103, (34), 7184-7189.
    91. Chou, J.-C.; Lin, S.-A.; Lee, C.-Y.; Gan, J.-Y. Journal of Materials Chemistry A 2013, 1, (19), 5908-5914.
    92. Ren, Z.-s.; Hu, X.-j.; Li, S.-y.; Xue, X.-x.; Chou, K.-c. Int J Miner Metall Mater 2013, 20, (3), 273-278.
    93. Palgrave, R. G.; Bourlange, A.; Payne, D. J.; S. Foord, J.; Egdell, R. G. Crystal Growth & Design 2009, 9, (4), 1793-1797.
    94. McIntyre, N. S.; Zetaruk, D. G. Anal. Chem. 1977, 49, (11), 1521-1529.
    95. Carley, A. F.; Chalker, P. R.; Riviere, J. C.; Roberts, M. W. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1987, 83, (2), 351-370.
    96. Magnan, H.; Stanescu, D.; Rioult, M.; Fonda, E.; Barbier, A. Appl. Phys. Lett. 2012, 101, (13), 133908.
    97. Fujii, T.; de Groot, F. M. F.; Sawatzky, G. A.; Voogt, F. C.; Hibma, T.; Okada, K. Physical Review B 1999, 59, (4), 3195-3202.
    98. Mills, P.; Sullivan, J. L. J. Phys. D: Appl. Phys. 1983, 16, (5), 723.
    99. Cao, Y.; He, T.; Zhao, L.; Wang, E.; Yang, W.; Cao, Y. The Journal of Physical Chemistry C 2009, 113, (42), 18121-18124.
    100. Tang, H.; Matin, M. A.; Wang, H.; Deutsch, T.; Al-Jassim, M.; Turner, J.; Yan, Y. J. Appl. Phys. 2011, 110, (12), 123511.
    101. Deng, J.; Zhong, J.; Pu, A.; Zhang, D.; Li, M.; Sun, X.; Lee, S.-T. J. Appl. Phys. 2012, 112, (8), 084312.
    102. Glasscock, J. A.; Barnes, P. R. F.; Plumb, I. C.; Bendavid, A.; Martin, P. J. Thin Solid Films 2008, 516, (8), 1716-1724.
    103. Hisatomi, T.; Dotan, H.; Stefik, M.; Sivula, K.; Rothschild, A.; Grätzel, M.; Mathews, N. Adv. Mater. 2012, 24, (20), 2699-2702.
    104. PVCDROM. http://pveducation.org/pvcdrom/appendices/standard-solar-spectra.
    105. Toupin, M.; Brousse, T.; Bélanger, D. Chem. Mater. 2004, 16, (16), 3184-3190.
    106. Hyun, T. S.; Kang, J. E.; Kim, H. G.; Hong, J. M.; Kim, I. D. Electrochem. Solid State Lett. 2009, 12, (12), A225-A228.
    107. Youn, D. Y.; Tuller, H. L.; Hyun, T. S.; Choi, D. K.; Kim, I. D. J. Electrochem. Soc. 2011, 158, (8), A970-A975.
    108. Lin, Y. T.; Chen, C. Y.; Hsiung, C. P.; Cheng, K. W.; Gan, J. Y. Appl. Phys. Lett. 2006, 89, (6), 063123.
    109. Chueh, Y. L.; Hsieh, C. H.; Chang, M. T.; Chou, L. J.; Lao, C. S.; Song, J. H.; Gan, J. Y.; Wang, Z. L. Adv. Mater. 2007, 19, (1), 143-149.
    110. Miller, D. J.; Biesinger, M. C.; McIntyre, N. S. Surf. Interface Anal. 2002, 33, (4), 299-305.
    111. Kleiman-Shwarsctein, A.; Laursen, A. B.; Cavalca, F.; Tang, W.; Dahl, S.; Chorkendorff, I. Chem. Commun. 2012, 48, (7), 967-969.
    112. Portehault, D.; Cassaignon, S.; Baudrin, E.; Jolivet, J.-P. J. Mater. Chem. 2009, 19, (16), 2407-2416.
    113. Rayner-Canham, G., Descriptive Inorganic Chemistry. Freeman: New York, 1996.
    114. Douglas, B. M., D.; Alexander, J, Concepts and Models of Inorganic Chemistry, 3rd ed. Wiley & Sons: New York, 1994.
    115. Hyun, T.-S.; Tuller, H. L.; Youn, D.-Y.; Kim, H.-G.; Kim, I.-D. J. Mater. Chem. 2010, 20, (41), 9172-9179.
    116. Fan, Z.; Yan, J.; Zhi, L.; Zhang, Q.; Wei, T.; Feng, J.; Zhang, M.; Qian, W.; Wei, F. Adv. Mater. 2010, 22, (33), 3723-3728.
    117. Lu, X.; Yu, M.; Wang, G.; Zhai, T.; Xie, S.; Ling, Y.; Tong, Y.; Li, Y. Adv. Mater. 2013, 25, (2), 267-272.
    118. Wang, J.-G.; Yang, Y.; Huang, Z.-H.; Kang, F. J. Mater. Chem. 2012, 22, (33), 16943-16949.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE