簡易檢索 / 詳目顯示

研究生: 曾奕勛
Tseng, Yi-Hsun
論文名稱: 光參啁啾放大器產生高能量1.55微米飛秒脈衝
Multi-millijoule, femtosecond 1.55 μm pulses generated by optical parametric chirped pulse amplifier
指導教授: 陳明彰
Chen, Ming-Chang
口試委員: 朱旭新
Chu, Hsu-Hsin
楊尚達
Yang, Shang-Da
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 92
中文關鍵詞: 超快光學非線性光學光參啁啾放大器
外文關鍵詞: ultrafast optics, nonlinear optics, optical parametric chirped pulse amplifier
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高次諧波產生(high-order harmonics generation)由於其短波長和極短脈衝寬度的特性,被廣泛應用於奈米級顯微鏡以及電子動態研究,更進一步的,操作在水窗波段的高次諧波產生提供生物學家來觀察活體細胞,根據單原子模型中的高次諧波產生截止光子能量,高能近紅外脈衝適用於製造在水窗波段的高次諧波產生。在本論文中,我們介紹一個兩級光參啁啾脈衝放大器,他可以產生擁有3.26毫焦耳脈衝能量、87.6飛秒脈衝寬度、1千赫茲重複率以及1.55微米中心波長的高能量近紅外脈衝,該放大器的26毫焦耳、85秒、1千赫茲、1064奈米泵浦脈衝由商用的摻釹釔鋁石榴石(Nd:YAG)雷射放大器來提供。對於種子脈衝的產生,我們開發由1千赫茲重複率的商業摻鐿鎢酸釓鉀(Yb:KGW)雷射所泵浦的兩級光參放大器,其可以產生自我載子波包相位穩定的1.55 微米脈衝,經由自製的光柵脈衝伸展器,種子脈衝寬度被拉伸至51皮秒,在基於磷酸鈦氧鉀(KTP)晶體的兩級放大器後,種子脈沖能量放大至5.6毫焦耳,其最後一級的轉換效率高達37.2%,藉由優化自製的光柵壓縮器,1.55微米的脈衝被壓縮回87.6飛秒,其輸出能量為3.26毫焦耳且擁有良好的遠場光束品質,0.37%的功率波動顯示該高能近紅外脈衝擁有長期的穩定性。


    High-order harmonic generation (HHG) has been widely developed for application of nanoscale microscope or electron dynamics analysis, due to its short wavelength and extremely short pulse width. Furthermore, the HHG in water window, where the light is very transparent for water but high absorptive for C, N and O, has caught large attraction to obtain element-sensitive imaging of life cells. According to the HHG cut-off photon energy in single atom model, high-energy near-infrared (NIR) pulse is suitable as the driving source to generate HHG in water window. In the thesis, we introduce the intense NIR pulse with the pulse energy of 3.26 mJ and the pulse duration of 87.6 fs at the central wavelength of 1.55 μm, running at the repetition rate of 1 kHz. The scheme to generate such intense NIR pulses is a two-stage optical parametric chirped-pulse amplifier (OPCPA). This OPCPA is pumped by a commercial Nd:YAG amplifier which provides intense 26 mJ pulses at 1064 nm. For the seed pulse, a two-stage optical parametric amplifier (OPA) based on BBO and KTP crystals pumped by a commercial Yb:KGW laser is developed, which generates self-carrier-envelope phase (self-CEP) stabilized idler pulse at 1.55 μm. A home-made grating-based stretcher is used to stretch seed pulse to 70 ps. After a two-stage KTP-based optical parametric amplifier, the seed pulse is amplified to 5.6 mJ with the conversion efficiency up to 37.2 % in the last stage with good long-term stability. By optimizing a home-made grating-based compressor, the 1.55 μm pulse is compressed back to 87.6 fs with 3.26 mJ high pulse energy and good far-field beam quality.

    摘要…………………………………………………………………...….1 Abstract…………………………………………………………………...2 Acknowledgements…………………………………………………...….3 List of figure………………………………………………………………7 List of table……………………………………………………………...11 CHAPTER 1 Introduction……………………………………………..12 CHAPTER 2 Theory………...…………………………………………..20 2.1 Parametric gain for OPA……………………………………20 2.2 Phase-matching bandwidth…………………………………26 CHAPTER 3 Experimental setup and results………………………34 3.1 Yb:KGW laser…………………………………………………34 3.2 Nd:YAG amplifier………………………………………………36 3.3 Selection rules for suitable nonlinear crystals………………38 3.3-1 Transparency window……………………………………38 3.3-2 Effective interactive length for parametric amplification...39 3.3-3 Phase-matching bandwidth and spatial work-off. ..………40 3.3-4 Crystal optical damage…………………………………41 3.3-5 Selection rules for suitable nonlinear crystals…………42 3.4 Optical parametric amplifier………………………………43 3.5 Stretcher and compressor…………………………………48 3.6 Optical parametric chirped pulse amplifier….…………53 3.7 Synchronization of Yb:KGW laser and Nd:YAG amplifie.62 CHAPTER 4 Conclusions and perspective………………………64 Appendix A Sellmeier equations for nonlinear crystals…………...……..66 Appendix B Simulation programs……………………….……….……..67 B.1 Optical parametric amplification process in a KTP crystal for 1064 nm pump, 1550 nm signal and 3.4 µm idler……………………….68 B.1-1 Sub-program…………………………………….………68 B.1-2 Main program………………………………….………69 B.2 Power relation between signal/idler and pump for optical parametric amplification in a KTP crystal…………………………71 B.2-1 Sub-program…………………………………….………71 B.2-2 Main program………………………………….………73 B.3 Phase-matching angle for BBO crystal at 515 nm pump considering type I (o_s+o_i→e_p), type II (e_s+o_i→e_p) and type II (o_s+e_i→e_p) phase matching. ………….………………………75 B.4 Phase-matching bandwidth as a function of non-collinear angle in a 6-mm-thichness KTP crystal for type II phase matching (e_s+o_i→o_p, principle plane x-z) at 1064 nm pump and 1550 nm signal. ………………………….…………….……………………77 B.4-1 Sub-program…………………………………….………77 B.4-2 Main program………………………………….………78 B.5 Phase-matching angle in KTP crystal for type II phase matching (e_s+o_i→o_p, principle plane x-z) at different nonlinear angle and 1064 nm pump………………………………………………………80 Appendix C Group-velocity dispersion (GVD), third-order dispersion (TOD) and fourth-order dispersion (FOD) given from stretcher and nonlinear crystals ……………………………………………………….82 C.1 Stretcher………………………….…………………………….82 C.2 Compressor……………………….…………………………….83 C.3 Nonlinear crystals……………………….…………………….84 Appendix D Photos of OPCPA setup………………………………….85 D.1 Two-stage OPA……………………………………………….85 D.2 Stretcher……….……………………………………………….86 D.3 Compressor….……………………………………………….86 D.4 Four-stage OPA/OPCPA……………………………………….87 Reference…………………………………………………..……………88

    [1] Burnett, N. H., et al. "Harmonic generation in CO2 laser target interaction." Applied Physics Letters 31.3 (1977): 172-174.
    [2] McPherson, A., et al. "Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases." JOSA B 4.4 (1987): 595-601.
    [3] Popmintchev, Tenio, et al. "Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers." science 336.6086 (2012): 1287-1291.
    [4] Gardner, Dennis F., et al. "Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source." Nature Photonics 11.4 (2017): 259-263.
    [5] Silva, Francisco, et al. "Spatiotemporal isolation of attosecond soft X-ray pulses in the water window." Nature communications 6 (2015).
    [6] Qin, Meiyan, and Xiaosong Zhu. "Molecular orbital imaging for partially aligned molecules." Optics & Laser Technology 87 (2017): 79-86.
    [7] Wachulak, Przemysław, et al. "Bioimaging Using Full Field and Contact EUV and SXR Microscopes with Nanometer Spatial Resolution." Applied Sciences 7.6 (2017): 548.
    [8] Corkum, Paul B. "Plasma perspective on strong field multiphoton ionization." Physical Review Letters 71.13 (1993): 1994.
    [9] Popmintchev, Tenio, et al. "The attosecond nonlinear optics of bright coherent X-ray generation." Nature Photonics 4.12 (2010): 822-832.
    [10] Spielmann, Ch, et al. "Generation of coherent X-rays in the water window using 5-femtosecond laser pulses." Science 278.5338 (1997): 661-664.
    [11] Chang, Zenghu, et al. "Generation of coherent soft X rays at 2.7 nm using high harmonics." Physical Review Letters 79.16 (1997): 2967.
    [12] Popmintchev, Dimitar, et al. "Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas." Science 350.6265 (2015): 1225-1231.
    [13] Popmintchev, Tenio, et al. "Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum." Proceedings of the National Academy of Sciences 106.26 (2009): 10516-10521.
    [14] Takahashi, Eiji J., et al. "Coherent water window x ray by phase-matched high-order harmonic generation in neutral media." Physical Review Letters 101.25 (2008): 253901.
    [15] Chen, M-C., et al. "Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source." Physical Review Letters 105.17 (2010): 173901.
    [16] Stein, Gregory J., et al. "Water-window soft x-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 μm OPCPA source." Journal of Physics B: Atomic, Molecular and Optical Physics 49.15 (2016): 155601.
    [17] Popmintchev, Tenio, et al. "Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers." science 336.6086 (2012): 1287-1291.
    [18] Backus, Sterling, et al. "High power ultrafast lasers." Review of scientific instruments 69.3 (1998): 1207-1223.
    [19] Giordmaine, J. A., and Robert C. Miller. "Tunable coherent parametric oscillation in LiNb O 3 at optical frequencies." Physical Review Letters 14.24 (1965): 973.
    [20] Rotermund, F., et al. "Optical parametric generation of femtosecond pulses up to 9 μm with LiInS 2 pumped at 800 nm." Applied Physics Letters 78.18 (2001): 2623-2625.
    [21] Li, Chuang, et al. "Generation of carrier-envelope phase stabilized intense 1.5 cycle pulses at 1.75 μm." Optics express 19.7 (2011): 6783-6789.
    [22] Silva, F., et al. "High-average-power, carrier-envelope phase-stable, few-cycle pulses at 2.1 μm from a collinear BiB3O6 optical parametric amplifier." Optics letters 37.5 (2012): 933-935.
    [23] Yin, Yanchun, et al. "High-energy two-cycle pulses at 3.2 μm by a broadband-pumped dual-chirped optical parametric amplification." Optics express 24.22 (2016): 24989-24998.
    [24] Potemkin, F. V., et al. "Mid-IR (4–5 µm) femtosecond multipass amplification of optical parametric seed pulse up to gigawatt level in Fe2+: ZnSe with optical pumping by a solid-state 3 µm laser." Laser Physics Letters 13.12 (2016): 125403.
    [25] Malevich, Pavel, et al. "Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho: YAG chirped-pulse amplifier." Optics letters 41.5 (2016): 930-933.
    [26] Dubietis, A., G. Jonušauskas, and A. Piskarskas. "Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal." Optics Communications 88.4-6 (1992): 437-440.
    [27] Mücke, O. D., et al. "10-mJ optically synchronized CEP-stable chirped parametric amplifier at 1.5 μm." Optics and Spectroscopy 108.3 (2010): 456-462.
    [28] Budriūnas, Rimantas, et al. "53 W average power CEP-stabilized OPCPA system delivering 5.5 TW few cycle pulses at 1 kHz repetition rate." Optics Express 25.5 (2017): 5797-5806.
    [29] Kanai, Tsuneto, et al. "Parametric amplification of 100 fs mid-infrared pulses in ZnGeP2 driven by a Ho: YAG chirped-pulse amplifier." Optics Letters 42.4 (2017): 683-686.
    [30] Yin, Yanchun, et al. "Towards terawatt sub-cycle long-wave infrared pulses via chirped optical parametric amplification and indirect pulse shaping." Scientific Reports 8 (2017).
    [31] Rigaud, Philippe, et al. "Supercontinuum-seeded few-cycle mid-infrared OPCPA system." Optics Express 24.23 (2016): 26494-26502.
    [32] Ishii, N., et al. "Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 μm from a BiB3O6 optical parametric chirped-pulse amplifier." Optics letters 37.20 (2012): 4182-4184.
    [33] Lu, Chih-Hsuan, et al. "Generation of intense supercontinuum in condensed media." Optica 1.6 (2014): 400-406.
    [34] Cerullo, Giulio, and Sandro De Silvestri. "Ultrafast optical parametric amplifiers." Review of scientific instruments 74.1 (2003): 1-18.
    [35] Kato, K. "Second-harmonic generation to 2048 Å in Β-Ba2O4." IEEE journal of quantum electronics 22.7 (1986): 1013-1014.
    [36] Kato, Kiyoshi, and Eiko Takaoka. "Sellmeier and thermo-optic dispersion formulas for KTP." Applied optics 41.24 (2002): 5040-5044.
    [37] Vanherzeele, Herman, John D. Bierlein, and F. C. Zumsteg. "Index of refraction measurements and parametric generation in hydrothermally grown KTiOPO4." Applied optics 27.16 (1988): 3314-3316.

    QR CODE