簡易檢索 / 詳目顯示

研究生: 陳盈穎
Chen, Ying-Ying.
論文名稱: 教學順序對學習影響之研究 ─以因數概念教學為例
The learning effect of the teaching sequence:A case study on the instruction of factor concepts
指導教授: 曾正宜
Tzeng, Jeng-Yi
口試委員: 呂秀蓮
Lu, Hsiu-Lien
劉樹忠
Liou, Shu-Jung
學位類別: 碩士
Master
系所名稱: 清華學院 - 學習科學研究所
Institute of Learning Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 113
中文關鍵詞: 教學順序因數概念
外文關鍵詞: teaching sequence, factor concepts
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因數概念不管對教師或學習者而言,都是困難且複雜的學習內容。因此本研究希望以不同教學順序的觀點,探究何種教學順序對國小五年級學習者因數概念的學習較有幫助。並以準實驗研究法的方式,分別介入「活動後教學」以及「教學後活動」,再以質性與量化的方式分析學習者的表現,用以釐清何種教學順序對於因數學習較有幫助。
    透過量化分析發現,接受「活動後教學」和「教學後活動」的學習者,在因數事實性知識的表現並無差異。但接受「活動後教學」的學習者,相較起「教學後活動」的學習者,在較困難的第三部份與第四部份題目上,進步狀況較好,且前後測總分的進步幅度顯著優於「教學後活動」的學習者。
    在此同時,接受「活動後教學」的學習者的課堂表現以及學習單紀錄,較接受「教學後活動」的學習者,更能發現並解釋因數概念的知識要素。
    因此,針對因數概念的學習,透過本研究的分析結果證實,先給予學習者活動,再給予正式講述教學,對於因數學習較有幫助。


    Students find it difficult to learn the concept of factors. It is equally challenging for teachers to impart factor concepts to their students. This study aimed to test an inverted teaching sequence in teaching factor concepts to 5th grade students to ascertain whether they would find the factor concept easier to grasp through the proposed arrangement. The study used a quasi-experimental design and applied the methodology of an activity followed by instruction in one section and instruction followed by activity in another. The qualitative and quantitative data obtained from the experimental classes were subsequently analyzed to decipher the differences between the two teaching sequences for students to learn factor concepts.
    The quantitative data analysis revealed no difference between the two experimental groups with regard to the fundamental comprehension of factors. However, the activity before teaching group progress more than the teaching followed by activity section on the third and fourth part of questions that required the grasp of complex factor concepts. Moreover, the degree of the total score progress was found to be significantly more advanced in the activity before teaching group.
    The learner reactions and learning sheets submitted by the two sections also evidenced that the activity before teaching group understood factor concepts better and that this unit could explain factor concepts in a more lucid manner than the teaching followed by activity group.
    Thus, the study data confirmed that factor concepts are better grasped by learners by undertaking an activity before receiving direct instruction.

    摘要……………………………………………………………………………………ⅰ 誌謝 …………………………………………………………………………………ⅲ 目次 …………………………………………………………………………………ⅳ 表目次 ………………………………………………………………………………ⅵ 圖目次 ………………………………………………………………………………ⅶ 第一章、緒論…………………………………………………………………………1 第一節、研究背景與動機………………………………………………………1 第二節、研究目的與待答問題…………………………………………………5 第三節、研究範圍與限制………………………………………………………6 第二章、文獻探討……………………………………………………………………7 第一節、活動對教學的影響與意義……………………………………………7 第二節、教學順序對學習的影響 ……………………………………………13 第三節、因數定義 ……………………………………………………………27 第三章、研究方法 …………………………………………………………………32 第一節、研究架構與設計 ……………………………………………………32 第二節、研究程序 ……………………………………………………………37 第三節、研究對象 ……………………………………………………………44 第四節、研究工具 ……………………………………………………………44 第五節、資料處理與分析 ……………………………………………………64 第四章、研究結果與討論 …………………………………………………………66 第一節、因數學習成效之比較 ………………………………………………66 第二節、因數學習歷程表現之比較 …………………………………………75 第五章、討論 ………………………………………………………………………83 第一節、研究討論 ……………………………………………………………83 第二節、研究小結 ……………………………………………………………92 第六章、結論與建議 ………………………………………………………………93 第一節、結論 …………………………………………………………………93 第二節、建議 …………………………………………………………………96 參考文獻 ……………………………………………………………………………99 附錄…………………………………………………………………………………104

    一、中文文獻
    易正明(2004)。有趣的數學活動。國教輔導,44(1),14- 20。
    郭文金、梁惠珍、柳賢(2015)。數學動手做活動對六七年級女學生數學學習自
    我效能影響之初探。屏東大學科學教育,1,54-82。
    劉伊祝(2007)。 從認知發展理論淺談小五因數與倍數單元之學習策略。國教之
    友,60(1),54-59。
    黃國勳、劉祥通(2002)。歡樂滿堂的數學課-因數教材創新教學之實踐。科學
    教育研究與發展季刊,26,52-64。
    劉祥通、黃國勳(2003)。實踐小學因數教學模組之研究。科學教育學刊,
    11(3),235-256。
    劉祥通、周立勳(1999)。國小比例問題教學實踐課程之開發研究。中師數理學
    報,3(1),1-25。
    黃國勳、劉祥通(2003)。國小五年級學童學習因數教材困難之探討。科學教育
    研究與發展季刊,30,52-70。
    教育部(2003)。國民中小學九年一貫課程綱要數學習領域。台北市:教育部。
    二、外文文獻
    Akhtar, M., & Saeed, M. (2017). Applying activity based learning (ABL) in
    improving quality of teaching at secondary school level. PJERE, 2(2), 37-47.
    Al-Shammari, Z., Al-Sharoufi, H., & Yawkey, T, D. (2008). The effectiveness of
    direct instruction in teaching english in elementary public education schools
    in kuwait: A research case study. Education, 129(1), 80-90.
    Bonwell, C, C. (2000). Active learning: Creating excitement in the classroom.
    Retrieved from https://www.asec.purdue.edu/lct/hbcu/documents/active_learning
    _creating_excitement_in_the_classroom.pdf
    Betts, B., & Liow, S, R. (2006). The relationship between teaching methods and
    educational objectives in building education. Construction Management and
    Economics, 11(2), 131-141.
    Belenky, D, M., & Nokes-Malach, T, J. (2012). Motivation and transfer: The role of
    mastery-approach goals in preparation for future learning. Journal of the
    Learning Sciences, 21(3), 399-432.
    Collins, A. (2012). What is the most effective way to teach problem solving?A
    commentary on productive failure as a method of teaching. Instructional Science,
    40(4), 731–735.
    Cernusca, D., & Mallik, S. (2018). Making failure productive in an active learning
    context:Improved student performance and perceptions in a pharmaceutics
    chemistry course. The Quarterly Review of Distance Education, 19(2), 37–49.
    DeCaro, M, S., & Rittle-Johnson, B. (2012). Exploring mathematics problems
    prepares children to learn from instruction. Journal of Experimental Child ‘
    Psychology, 113(4), 552–568.
    Fallon, E., Walsh, S., & Prendergast, T. (2013). An activity-based approach to the
    learning and teaching of research methods: Measuring student engagement
    and Learning. Irish Journal of Academic Practice, 2(1), 1-24.
    Gersten, R., & Carnine, D. (1984). Direct instruction mathematics: A longitudinal
    evaluation of low-income elementary school students. The Elementary School
    Journal, 84(4), 395-407.
    Gleason, B, L., Peeters, M, J., Resman-Targoff, B, H., Karr, S., Mcbane, S., Kelley,
    K., Thomas, T., & Denetclaw, T, H. (2011). An active-learning strategies primer
    for achieving ability-based educational outcomes. American Journal of Pharmaceutical Education, 75(9), 1-12.
    Hodson, D. (2014). Learning science, learning about science, doing science:
    Different goals demand different learning methods. International Journal of
    Science Education, 36(15), 2534-2553.
    Hammer, J., & Black, J. (2009). Games and(preparation for future)learning.
    Educational Technology, 49(2), 29-34.
    Harfield, T., Davies, K., Hede, J., Panko, M., & Kenley, R. (2007). Activity-
    based teaching for unitec new zealand construction students. Emirates Journal
    for Engineering Research, 12(1), 57-63.
    Halpern, R. (2016). Active learning works! Until it doesn't: Measuring the
    effectiveness of activity-based learning exercises on information anxiety.
    Journal of Library & Information Services in Distance Learning, 10(3-4), 242-
    253.
    Kolb, D, A. (1984). Experiential learning: Experience as the source of learning and
    development. Englewood Cliffs, NJ: Prentice Hall.
    Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the
    Learning Sciences, 21(1), 45-83.
    Kapur, M. (2014). Productive failure in learning math. Cognitive Science, 38(5),
    1008–1022.
    Kapur, M., & Rummel, N. (2012). Productive failure in learning from generation and
    invention activities. Instructional Science, 40(4), 645–650.
    Kapur, M. (2011). A further study of productive failure in mathematical problem
    solving:Unpacking the design components. Instructional Science, 39(4), 561–
    579.
    Kapur, M., & Knzer, C, K. (2009). Productive failure in CSCL groups.Computer-Supported Collaborative Learning, 4(1), 21-46.
    Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science
    instruction: Effects of direct instruction and discovery learning. Psychological
    Science, 15(10), 661–667.
    Kirschner, P, A., Sweller, J., & Clark, R, E. (2006). Why minimal guidance during
    instruction does not work: An analysis of the failure of constructivist,
    discovery, problem-based, experiential, and inquiry-based teaching.
    Educational Psychologist, 41(2), 75-86.
    Mylopoulos, M., Brydges, R., Woods, N, N., Manzone, J., & Schwartz, D, L. (2016).
    Preparation for future learning: a missing competency in health professions
    education? Medical Education, 50(1), 115–123.
    Mayer, R, E. (2004). Should there be a three-strikes rule against pure discovery
    learning? American Psychologist, 59(1), 14-19.
    Petress, K. (2008). What is meant by "active learning?''. Education, 128(4), 566-569.
    Pang, K. (2010). Creating stimulating learning and thinking using new models of
    activity-based learning and metacognitive-based activities. Journal of College
    Teaching and Learning, 7(4), 29-38.
    Prince, M. (2004). Does active learning work? A review of the research. Journal of
    Engineering Education, 93(3), 223-231.
    Ravi, R., & Xavier, P. (2007). Activity based learning as self-accessing strategy to
    promote learners' autonomy. Journal on Educational Psychology, 1(2), 7-9.
    Reese, D, D. (2007). First steps and beyond:Serious games as preparation for future
    learning. Journal of Educational Multimedia and Hypermedia, 16(3), 283-300.
    Sivertsen, M, L. (1993). Transforming ideas for teaching and learning science:A
    guide for elementary science education. Washington, DC: Office of Research.
    Song, Y., & Kapur, M. (2017). How to flip the classroom - productive failure or
    traditional flipped classroom pedagogical design? Educational Technology &
    Society, 20(1), 292–305.
    Song, Y. (2018). Improving primary students’ collaborative problem solving
    competency in project-based science learning with productive failure
    instructional design in a seamless learning environment. Educational Technology
    Research and Development, 66(4), 979–1008.
    Siler, S, A., Klahr, D., & Price, N. (2013). Investigating the mechanisms of learning
    from a constrained preparationfor future learning activity. Instructional Science,
    41(1), 191–216.
    Schwartz, D, L., & Bransford, J, D. (1998). A time for telling. Cognition and
    Instruction, 16(4), 475-522.
    Schwartz, D, L., & Martin, T. (2004). Inventing to prepare for future learning: The
    hidden efficiency of encouraging original student roduction in statistics
    instruction. Cognition and Instruction, 22(2), 129-184.
    Sweller, J., & Chandler, P. (1991). Evidence for cognitive load theory. Cognition and
    Instruction, 8(4), 351-362.
    Tuovinen, J, E., & Sweller, J. (1999). A comparison of cognitive load associated with
    discovery learning and worked examples. Journal of Educational Psychology,
    91(2), 334-341.
    Watson, W, A. (2010). Middle school students’ experiences on a science museum
    field trip as preparation for future learning (Unpublished doctoral dissertation).
    George Washington University, Washington.

    QR CODE