簡易檢索 / 詳目顯示

研究生: 詹濠先
Chan, Hau-Shien
論文名稱: 第二十三型絲胺酸蛋白酶的高量表現受第一型雌激素受體於乳癌細胞中之調控對於促進細胞增生之研究
Investigation of Serine Protease PRSS23 Upregulation by Estrogen Receptor α in Breast Cancer Cell Proliferation
指導教授: 莊永仁
口試委員: 孫玉珠
詹鴻霖
莊永仁
張文祥
郭靜娟
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 118
中文關鍵詞: 第二十三型絲安酸蛋白酶雌激素受體乳癌細胞增生
外文關鍵詞: PRSS23, estrogen receptor, breast cancer, proliferation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雌激素訊息傳導是已知會影響到乳癌細胞增生、凋亡以及存活的重要機制之一,此訊息傳導會調控下游眾多作用蛋白的產生。自人類基因體計畫執行後,第23型絲胺酸蛋白酶(PRSS23)是一新被發現與鑑定的蛋白質。有趣的是,PRSS23會與雌激素第一型受器(ERα)在乳癌細胞中會一同表現,ERα在臨床上已知是一個對於乳癌腫瘤治療重要的生物標記與投藥治療目標。同時,近期的研究報導亦暗示PRSS23的表現會促進各種不同的癌症的產生。
    在此研究中,首先的研究目的是以生物資訊學的方式分析PRSS23的特性。透過分析乳癌的微陣列資料顯示PRSS23與ERα的表現之間有顯著的相關性,因此可以認為PRSS23是一個ERα相關的蛋白質。利用胺基酸序列來進行分析,結果認為PRSS23是一個鹼性、親水性的蛋白質,但在其N端的序列具有一段疏水性質的特異片段。根據立體結構模擬的結果–PRSS23與甘露糖結合蛋白結合絲胺酸蛋白酶第2型在結構上是相似的,推測PRSS23的活化位由三個胺基酸所組成,包括His135,Asp246以及Ser316。這些初步的研究資訊也作為後續的研究提供適當線索。
    由於細胞內位置可暗示蛋白質的功能。因此,在進行基因選殖與生產抗PRSS23的抗體之後,此研究的第二個目的是去探討PRSS23於乳癌細胞MCF-7中可能的位置。首先,免疫細胞染色的結果顯示內源性的PRSS23位於細胞核中。另外一方面,透過將eGFP- PRSS23融合蛋白突變的研究,瞭解到PRSS23具有一段特異性的細胞核定位序列(NLS)。這些結果皆顯示PRSS23位於MCF-7細胞的細胞核中。因此,可以合理的去假設PRSS23可能會參與細胞增生、分化、甚至是調控基因的表現。
    為了研究PRSS23在乳癌細胞的樣本上是否有顯著地受到ERα調控,此篇研究的第三個目標是去釐清此假設是否成立。PRSS23蛋白質的表現在56位乳癌病人中的檢體皆顯示與ERα的表現有高度的相關性。另一方面,表現ERα的乳癌細胞株中亦表現PRSS23的蛋白質。在試管內的實驗中,亦顯示PRSS23的基因可被雌二醇活化的ERα所調控。另外一方面,PRSS23的RNA被抑制後可以降低MCF-7細胞增生的程度。
    這些發現暗示PRSS23對於的雌激素所調控ERα陽性乳癌細胞增生的過程是個重要因子。總結來說,此篇研究的結果顯示PRSS23在乳癌的研究領域中具有潛力成為重要的乳癌治療目標。


    Estrogen signaling is one of the known mechanisms to affect breast cancer cell proliferation, apoptosis, and survival, which promotes tumorigenesis by regulating the production of numerous downstream effector proteins. Serine protease PRSS23 is a newly identified protein since the human genome project. Interestingly, in breast cancers, PRSS32 was coexpressed with estrogen receptor α (ERα), which was one of the prominent biomarkers and therapeutic target for breast cancer therapy. Meanwhile, recent studies implied that PRSS23 might be been associated with tumor progression in various types of cancers.
    In the present study, the first specific aim was to characterize properties of PRSS23 in silico. Analysis of published breast cancer microarray datasets revealed that the gene expression correlation between ERα and PRSS23 was highly significant among all ERα-associated proteases in breast cancer. Based on the deduced amino acid sequence, the analytical results implied that PRSS23 might be a basic and hydrophilic serine protease with a leading hydrophobic motif. As a result of the model of three-dimensional structural simulation which showed PRSS23 was structurally analogous to mannose-binding protein-associated serine protease 2, His135, and Asp246, and Ser316 might comprise the component residues of the hypothetical catalytic triad of PRSS23. The preliminary information would pave the way for studies in the future.
    Subcellular localization may imply the function of a protein. Thus, after gene cloning and anti-PRSS23 production, the second specific aim of this study was to identify the subcellular localization of PRSS23 in MCF-7 breast cancer cells. Firstly, the results of the immunocytochemical study showed endogenous PRSS23 was located at cell nucleus. Furthermore, the nuclear localization sequence of PRSS23 was identified in the study of eGFP-PRSS23 mutagenesis. Therefore, the results indicated PRSS23 was located in the cell nucleus in MCF-7 cells. Accordingly, it was conceivable to hypothesize that PRSS23 might participate in cell proliferation, differentiation, and even gene expression.
    To investigate whether PRSS23 expression was regulated by ERα in breast cancer cells, the third specific aim was to clarify the correlation between and functional implication of ERα and PRSS23 in breast cancer. PRSS23 expression was then assessed in 56 primary breast cancers biopsies and eight cancer cell lines. The results consistently confirmed the coexpression of PRSS23 and ERα with clinicopathological significance. In vitro assays in MCF-7 cells demonstrated that PRSS23 expression was induced by 17β-estradiol-activated ERα through an interaction with an upstream promoter region. On the other hand, PRSS23 knockdown may suppress estrogen-driven cell proliferation of MCF-7 cells.
    These findings implied that PRSS23 might be a critical component of estrogen-mediated cell proliferation of ERα-positive breast cancer cells. In conclusion, the present study highlights the potential for PRSS23 to be a novel therapeutic target in breast cancer research.

    ABSTRACT...............II 摘要...................IV 誌謝...................V ABBREVIATIONS...............4 CHEMICALS AND REAGENTS...............4 SPECIALIZED TERMS...............4 CHAPTER I - GENERAL INTRODUCTION...............6 1.1- SERINE PROTEASES...............7 1.2- SERINE PROTEASES IN DISEASES...............7 1.3- SERINE PROTEASE PRSS23...............9 CHAPTER 2 - MATERIALS AND METHODS...............11 2.1- ETHICS STATEMENT...............12 2.2- STATISTICS AND DATA ANALYSIS...............12 2.3- CLONING AND CONSTRUCTION OF EXPRESSION PLASMIDS...............12 2.4- CELL CULTURE, CELL TRANSFECTION...............13 2.5- ANTI-PRSS23 ANTIBODY PRODUCTION...............14 2.6- MEMBRANE IMMUNOBLOT...............14 2.7- FLUORESCENT IMMUNOCYTOCHEMISTRY...............15 2.8- SUBCELLULAR FRACTIONATION...............16 2.9- CLONING, SITE-DIRECTED MUTAGENESIS, AND CONSTRUCTION OF EXPRESSION PLASMIDS...............17 2.10- IMMUNOHISTOCHEMISTRY...............18 2.11- QUANTITATIVE REAL-TIME PCR AND SEMI-QUANTITATIVE PCR...............18 2.12- PROMOTER LUCIFERASE REPORTER ASSAY...............19 2.13- CHROMATIN IMMUNOPRECIPITATION (CHIP) ASSAY...............19 2.14- FLOW CYTOMETRY...............20 2.15- DOUBLE THYMIDINE CELL GROWTH SYNCHRONIZATION...............20 2.16- SOFT-AGAR COLONY FORMATION ASSAY...............20 CHAPTER 3 - CHARACTERIZATION OF PRSS23 BY BIOINFORMATIC ANALYSIS, EXPRESSION PROFILING AND SUBCELLULAR LOCALIZATION...............22 3.1- BACKGROUND AND SPECIFIC AIMS...............23 3.2- RESULTS...............25 Identification and cloning of PRSS23 cDNA...............26 In silico topological analyses of PRSS23...............27 Identification of PRSS23 catalytic triad...............28 PRSS23 was highly expressed in MCF-7 cells...............28 Subcellular localization studies suggested protease domain was critical to nuclear localization of PRSS23...............29 Mutation of KRK motif disrupted nuclear localization of eGFP-PRSS23 P in MCF-7 cells...............30 CHAPTER 4 - ERΑ UPREGULATED PRSS23 TO MEDIATE BREAST CELL PROLIFERATION...............32 4.1- BACKGROUND AND SPECIFIC AIMS...............33 4.2- RESULTS...............38 Immunohistochemical assays revealed high PRSS23 expression was observed in ERα-positive breast cancer cells...............38 PRSS23 was highly expressed in ERα-positive breast cancer cell lines...............40 Estrogen stimulated PRSS23 expressed in ERα-positive MCF-7 breast cancer cells...............40 Overexpression of stable ERα enhanced PRSS23 expression in MCF-7 cells...............41 E2 driven-ERα upregulated PRSS23 level through upstream promoter region...............43 PRSS23 presented at G2/M transition in MCF-7 cells...............45 PRSS23 RNAi decreased MCF-7 cell proliferation...............46 CHAPTER 5 - DISCUSSION AND PROSPECTS...............48 5.1- SIGNIFICANCE OF THIS STUDY...............49 5.2- PRSS23 AS A REGULATOR...............49 5.3- UNIQUE PROPERTIES OF PRSS23...............51 5.4- ESTROGEN SIGNALING AND PRSS23 IN CANCER...............53 5.4- PRSS23 AND CHROMOSOME REMODELING...............55 BIBLIOGRAPHIES...............57 TABLES...............66 Table 1. The primer list for the cloning of human PRSS23 cDNA...............66 Table 2. The primer list for cloning of promoter region upstream of PRSS23 gene...............67 Table 3. The primer list of qRT-PCR for expression level evaluation in human cell lines 68 FIGURES...............70 Figure 1. Open reading frame of human PRSS23...............70 Figure 2. Domain organization map of PRSS23...............72 Figure 3. Phylogenetic tree of PRSS23’s orthologs...............73 Figure 4. PRSS23 gene expression profile in human tissues...............74 Figure 5. PRSS23 gene expression profile in human cancer tissues...............75 Figure 6. Gene expression analysis of breast cancer patients...............78 Figure 7. Hydrophobicity of PRSS23...............79 Figure 8. Identification of the catalytic triad of human PRSS23...............81 Figure 9. Production of anti-PRSS23 antibody from GST-PRSS23 fusion protein...............82 Figure 10. Overexpression of ectopic PRSS23 was detected by anti-PRSS23 antibody in MCF-7 cells................84 Figure 11. Comparison of anti-PRSS23 by Immunoblot...............85 Figure 12. Endogenous PRSS23 in nucleus of MCF-7 cells...............86 Figure 13. Expression of eGFP-PRSS23 fusion proteins in MCF-7 cells...............88 Figure 14. Mutation of nuclear localization sequence in MCF-7 cells...............89 Figure 15. The estrogens in human 91 Figure 16. The domain organization map of human estrogen receptor α...............92 Figure 17. Estrogen signaling transduction pathway...............93 Figure 18. Both PRSS23 and BRCA genes were stimulated by 17β-estradiol in MCF-7/BUS cell line...............94 Figure 19. Coincidence of ERα and PRSS23 expression in human breast carcinoma...............95 Figure 20. Immunohistochemical classification of anti-PRSS23 staining...............96 Figure 21. Expression of PRSS23 and ERα were analyzed in various human cell lines...............98 Figure 22. E2-activated ERα promoted PRSS23 mRNA level in MCF-7 cells...............100 Figure 23. E2 was irrelevant in upregulation of PRSS23 and pS2 in ERα-negative MDA-MB-231...............101 Figure 24. Increased ERα expression promoted PRSS23 upregulation in MCF-7 cells...............102 Figure 25. ERα stimulated PRSS23 upregulation through the upstream promoter region -2029 to -342 bp of PRSS23 gene in MCF-7 cells...............104 Figure 26. Dynamic expression of PRSS23 in MCF-7 cells...............106 Figure 27. PRSS23 RNAi knockdown attenuated estrogen-driven MCF-7 cell proliferation...............108 Figure 28. PRSS23 was upregulated to enhance proliferation of breast cancer cells...............110 APPENDIX FIGURES...............111 Figure A-1. The Structure of Chymotrypsin and General Mechanism of Serine Protease on Peptide Bond Hydrolysis...............111 Figure A-2. The Simulated Three-Dimensional Structure of PRSS23...............113 Figure A-3. Enzyme Activity Curves of GST-PRSS23-P and tPA Substrate...............115 Figure A-4. The Michaelis-Menten plot of GST-PRSS23-P with different concentration of Boc-VGR-βNA...............116 Figure A-5. The Subcellular Localizations of PRSS23 are Domain-Dependent in Transiently Transfected 293T cells...............117 Figure A-6. Mutation of K257RK259 reduces nuclear transportation...............118

    Allred, D. C., Harvey, J. M., Berardo, M., and Clark, G. M. (1998). Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11, 155-168.
    Backes, C., Kuentzer, J., Lenhof, H. P., Comtesse, N., and Meese, E. (2005). GraBCas: a bioinformatics tool for score-based prediction of Caspase- and Granzyme B-cleavage sites in protein sequences. Nucleic acids research 33, W208-213.
    Batinac, T., Zamolo, G., Coklo, M., and Hadzisejdic, I. (2006). Possible key role of granzyme B in keratoacanthoma regression. Medical hypotheses 66, 1129-1132.
    Berchem, G., Glondu, M., Gleizes, M., Brouillet, J. P., Vignon, F., Garcia, M., and Liaudet-Coopman, E. (2002). Cathepsin-D affects multiple tumor progression steps in vivo: proliferation, angiogenesis and apoptosis. Oncogene 21, 5951-5955.
    Bieche, I., Parfait, B., Laurendeau, I., Girault, I., Vidaud, M., and Lidereau, R. (2001). Quantification of estrogen receptor alpha and beta expression in sporadic breast cancer. Oncogene 20, 8109-8115.
    Bismar, T. A., and Trpkov, K. (2010). TMPRSS2-ERG gene fusion in transition zone prostate cancer. Mod Pathol 23, 1040-1041; author reply 1041-1042.
    Bitoun, E., Chavanas, S., Irvine, A. D., Lonie, L., Bodemer, C., Paradisi, M., Hamel-Teillac, D., Ansai, S., Mitsuhashi, Y., Taieb, A., et al. (2002). Netherton syndrome: disease expression and spectrum of SPINK5 mutations in 21 families. J Invest Dermatol 118, 352-361.
    Bloom, H. J., and Richardson, W. W. (1957). Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer 11, 359-377.
    Bugge, T. H., Antalis, T. M., and Wu, Q. (2009). Type II transmembrane serine proteases. The Journal of biological chemistry 284, 23177-23181.
    Catlin, R., Shah, H., Bankhurst, A. D., and Whalen, M. M. (2005). Dibutyltin exposure decreases granzyme B and perforin in human natural killer cells. Environmental toxicology and pharmacology 20, 395-403.
    Chang, C., Norris, J. D., Gron, H., Paige, L. A., Hamilton, P. T., Kenan, D. J., Fowlkes, D., and McDonnell, D. P. (1999). Dissection of the LXXLL nuclear receptor-coactivator interaction motif using combinatorial peptide libraries: discovery of peptide antagonists of estrogen receptors alpha and beta. Mol Cell Biol 19, 8226-8239.
    Chen, L. M., Skinner, M. L., Kauffman, S. W., Chao, J., Chao, L., Thaler, C. D., and Chai, K. X. (2001). Prostasin is a glycosylphosphatidylinositol-anchored active serine protease. The Journal of biological chemistry 276, 21434-21442.
    Chiang, C. H. (2009). Characterization of Serine Protease 23 - Screening of Substrates and Critical Residues for Enzymatic Function. National Tsing Hua University, 18-23.
    Cho, S. D., Lee, S. O., Chintharlapalli, S., Abdelrahim, M., Khan, S., Yoon, K., Kamat, A. M., and Safe, S. (2010). Activation of nerve growth factor-induced B alpha by methylene-substituted diindolylmethanes in bladder cancer cells induces apoptosis and inhibits tumor growth. Mol Pharmacol 77, 396-404.
    Coser, K. R., Chesnes, J., Hur, J., Ray, S., Isselbacher, K. J., and Shioda, T. (2003). Global analysis of ligand sensitivity of estrogen inducible and suppressible genes in MCF7/BUS breast cancer cells by DNA microarray. Proc Natl Acad Sci U S A 100, 13994-13999.
    Debnath, J., Muthuswamy, S. K., and Brugge, J. S. (2003). Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256-268.
    Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., Pienta, K. J., Rubin, M. A., and Chinnaiyan, A. M. (2001). Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822-826.
    Douglas, A. G., Rafferty, H., Hodgkins, P., Nagra, A., Foulds, N. C., Morgan, M., and Temple, I. K. (2010). Persistent Fetal Vasculature and Severe Protein C Deficiency. Molecular syndromology 1, 82-86.
    Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95, 14863-14868.
    Endoh, H., Maruyama, K., Masuhiro, Y., Kobayashi, Y., Goto, M., Tai, H., Yanagisawa, J., Metzger, D., Hashimoto, S., and Kato, S. (1999). Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19, 5363-5372.
    Evans, R. M. (1988). The steroid and thyroid hormone receptor superfamily. Science (New York, NY 240, 889-895.
    Fan, Z., Beresford, P. J., Oh, D. Y., Zhang, D., and Lieberman, J. (2003). Tumor suppressor NM23-H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112, 659-672.
    FitzGerald, L. M., Agalliu, I., Johnson, K., Miller, M. A., Kwon, E. M., Hurtado-Coll, A., Fazli, L., Rajput, A. B., Gleave, M. E., Cox, M. E., et al. (2008). Association of TMPRSS2-ERG gene fusion with clinical characteristics and outcomes: results from a population-based study of prostate cancer. BMC Cancer 8, 230.
    Fritz, W. A., Wang, J., Eltoum, I. E., and Lamartiniere, C. A. (2002). Dietary genistein down-regulates androgen and estrogen receptor expression in the rat prostate. Molecular and cellular endocrinology 186, 89-99.
    Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., and Wade, P. A. (2003a). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113, 207-219.
    Fujita, T., Kobayashi, Y., Wada, O., Tateishi, Y., Kitada, L., Yamamoto, Y., Takashima, H., Murayama, A., Yano, T., Baba, T., et al. (2003b). Full activation of estrogen receptor alpha activation function-1 induces proliferation of breast cancer cells. The Journal of biological chemistry 278, 26704-26714.
    Gatti, L., Carnelli, V., Rusconi, R., and Moia, M. (2003). Heparin-induced thrombocytopenia and warfarin-induced skin necrosis in a child with severe protein C deficiency: successful treatment with dermatan sulfate and protein C concentrate. Journal of thrombosis and haemostasis : JTH 1, 387-388.
    Geyer, A. S., Ratajczak, P., Pol-Rodriguez, M., Millar, W. S., Garzon, M., and Richard, G. (2005). Netherton syndrome with extensive skin peeling and failure to thrive due to a homozygous frameshift mutation in SPINK5. Dermatology 210, 308-314.
    Green, S., and Chambon, P. (1988). Nuclear Receptors Enhance Our Understanding of Transcription Regulation. Trends Genet 4, 309-314.
    Grisouard, J., Medunjanin, S., Hermani, A., Shukla, A., and Mayer, D. (2007). Glycogen synthase kinase-3 protects estrogen receptor alpha from proteasomal degradation and is required for full transcriptional activity of the receptor. Mol Endocrinol 21, 2427-2439.
    Guipponi, M., Vuagniaux, G., Wattenhofer, M., Shibuya, K., Vazquez, M., Dougherty, L., Scamuffa, N., Guida, E., Okui, M., Rossier, C., et al. (2002). The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Hum Mol Genet 11, 2829-2836.
    Hall, J. M., Couse, J. F., and Korach, K. S. (2001). The multifaceted mechanisms of estradiol and estrogen receptor signaling. The Journal of biological chemistry 276, 36869-36872.
    Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., Tujague, M., Strom, A., Treuter, E., Warner, M., and Gustafsson, J. A. (2007). Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87, 905–931.
    Ifon, E. T., Pang, A. L., Johnson, W., Cashman, K., Zimmerman, S., Muralidhar, S., Chan, W. Y., Casey, J., and Rosenthal, L. J. (2005). U94 alters FN1 and ANGPTL4 gene expression and inhibits tumorigenesis of prostate cancer cell line PC3. Cancer cell international 5, 19.
    Iraia, G. S., Zorroza, K., Rodriguez, J. A. (2012). Two Nuclear Localization Signals in USP1 Mediate Nuclear Import of the USP1/UAF1 Complex. PLoS ONE 7.
    Jarzab, B., Wiench, M., Fujarewicz, K., Simek, K., Jarzab, M., Oczko-Wojciechowska, M., Wloch, J., Czarniecka, A., Chmielik, E., Lange, D., et al. (2005). Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer research 65, 1587-1597.
    Jaspan, H. B., Gaumer, H. R., and Garry, R. F. (2003). Expression of granzyme B mRNA is altered in human immunodeficiency virus infected patients. Exp Mol Pathol 74, 13-16.
    Jensen, E. V. (1962). On the mechanism of estrogen action. Perspect Biol Med 6, 47-59.
    Johnson, B. J., Costelloe, E. O., Fitzpatrick, D. R., Haanen, J. B., Schumacher, T. N., Brown, L. E., and Kelso, A. (2003). Single-cell perforin and granzyme expression reveals the anatomical localization of effector CD8+ T cells in influenza virus-infected mice. Proc Natl Acad Sci U S A 100, 2657-2662.
    Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science (New York, NY 321, 1801-1806.
    Katzenellenbogen, B. S. (1996). Estrogen receptors: bioactivities and interactions with cell signaling pathways. Biology of reproduction 54, 287-293.
    Kazama, Y., Hamamoto, T., Foster, D. C., and Kisiel, W. (1995). Hepsin, a putative membrane-associated serine protease, activates human factor VII and initiates a pathway of blood coagulation on the cell surface leading to thrombin formation. The Journal of biological chemistry 270, 66-72.
    Kazi, A. A., and Koos, R. D. (2007). Estrogen-induced activation of hypoxia-inducible factor-1 alpha, vascular endothelial growth factor expression, and edema in the uterus are mediated by the phosphatidylinositol 3-kinase/Akt pathway. Endocrinology 148, 2363–2374.
    Key, T. J., Verkasalo, P. K., and Banks, E. (2001). Epidemiology of breast cancer. The lancet oncology 2, 133-140.
    Khaleque, M. A., Bharti, A., Gong, J., Gray, P. J., Sachdev, V., Ciocca, D. R., Stati, A., Fanelli, M., and Calderwood, S. K. (2007). Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene.
    Kitagawa, H., Yanagisawa, J., Fuse, H., Ogawa, S., Yogiashi, Y., Okuno, A., Nagasawa, H., Nakajima, T., Matsumoto, T., and Kato, S. (2002). Ligand-selective potentiation of rat mineralocorticoid receptor activation function 1 by a CBP-containing histone acetyltransferase complex. Mol Cell Biol 22, 3698-3706.
    Klezovitch, O., Chevillet, J., Mirosevich, J., Roberts, R. L., Matusik, R. J., and Vasioukhin, V. (2004). Hepsin promotes prostate cancer progression and metastasis. Cancer cell 6, 185-195.
    Krishnan, V., Wang, X. H., and Safe, S. (1994). Estrogen Receptor-Sp1 Complexes Mediate Estrogen-Induced Cathepsin-D Gene-Expression in Mcf-7 Human Breast-Cancer Cells. Journal of Biological Chemistry 269, 15912–15917.
    Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305, 567-580.
    Kuiper, G. G., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S., and Gustafsson, J. A. (1997). Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138, 863-870.
    Kuninaka, S., Iida, S. I., Hara, T., Nomura, M., Naoe, H., Morisaki, T., Nitta, M., Arima, Y., Mimori, T., Yonehara, S., and Saya, H. (2007). Serine protease Omi/HtrA2 targets WARTS kinase to control cell proliferation. Oncogene 26, 2395-2406.
    Kwek, S. S., Roy, R., Zhou, H., Climent, J., Martinez-Climent, J. A., Fridlyand, J., and Albertson, D. G. (2009). Co-amplified genes at 8p12 and 11q13 in breast tumors cooperate with two major pathways in oncogenesis. Oncogene.
    Kyte, J., and Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105-132.
    Latil, A., Bieche, I., Vidaud, D., Lidereau, R., Berthon, P., Cussenot, O., and Vidaud, M. (2001). Evaluation of androgen, estrogen (ER alpha and ER beta), and progesterone receptor expression in human prostate cancer by real-time quantitative reverse transcription-polymerase chain reaction assays. Cancer research 61, 1919-1926.
    Lecomte, J., Flament, S., Salamone, S., Boisbrun, M., Mazerbourg, S., Chapleur, Y., and Grillier-Vuissoz, I. (2008). Disruption of ERalpha signalling pathway by PPARgamma agonists: evidences of PPARgamma-independent events in two hormone-dependent breast cancer cell lines. Breast cancer research and treatment 112, 437-451.
    Lees, J. A., Fawell, S. E., and Parker, M. G. (1989). Identification of two transactivation domains in the mouse oestrogen receptor. Nucleic acids research 17, 5477-5488.
    Leytus, S. P., Loeb, K. R., Hagen, F. S., Kurachi, K., and Davie, E. W. (1988). A novel trypsin-like serine protease (hepsin) with a putative transmembrane domain expressed by human liver and hepatoma cells. Biochemistry 27, 1067-1074.
    Li, S., Han, B., Liu, G., Ouellet, J., Labrie, F., and Pelletier, G. (2010). Immunocytochemical Localization of Sex Steroid Hormone Receptors in Normal Human Mammary Gland. J Histochem Cytochem 58, 509–515.
    Lin, Y. C. (2008). Characterization of Serine Protease 23 and its potential roles in cancer invasion. National Tsing Hua University, 19-22.
    Lippman, M. E., Rae, J. M., and Chinnaiyan, A. M. (2008). An expression signature of estrogen-regulated genes predicts disease-free survival in tamoxifen-treated patients better than progesterone receptor status. Trans Am Clin Climatol Assoc 119, 77-90; discussion 90-72.
    List, K., Bugge, T. H., and Szabo, R. (2006). Matriptase: potent proteolysis on the cell surface. Mol Med 12, 1-7.
    Lonard, D. M., Nawaz, Z., Smith, C. L., and O'Malley, B. W. (2000). The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 5, 939–948.
    Lord, S. J., Rajotte, R. V., Korbutt, G. S., and Bleackley, R. C. (2003). Granzyme B: a natural born killer. Immunol Rev 193, 31-38.
    Matthews, J., and Gustafsson, J. A. (2003). Estrogen signaling: a subtle balance between ER alpha and ER beta. Molecular interventions 3, 281-292.
    Melchor, L., Honrado, E., Huang, J., Alvarez, S., Naylor, T. L., Garcia, M. J., Osorio, A., Blesa, D., Stratton, M. R., Weber, B. L., et al. (2007). Estrogen receptor status could modulate the genomic pattern in familial and sporadic breast cancer. Clin Cancer Res 13, 7305-7313.
    Michalides, R., Griekspoor, A., Balkenende, A., Verwoerd, D., Janssen, L., Jalink, K., Floore, A., Velds, A., van't Veer, L., and Neefjes, J. (2004). Tamoxifen resistance by a conformational arrest of the estrogen receptor alpha after PKA activation in breast cancer. Cancer cell 5, 597-605.
    Miyakoshi, K., Murphy, M. J., Yeoman, R. R., Mitra, S., Dubay, C. J., and Hennebold, J. D. (2006). The identification of novel ovarian proteases through the use of genomic and bioinformatic methodologies. Biology of reproduction 75, 823-835.
    Moffitt, K. L., Martin, S. L., and Walker, B. (2007). The emerging role of serine proteases in apoptosis. Biochem Soc Trans 35, 559-560.
    Moggs, J. G., Murphy, T. C., Lim, F. L., Moore, D. J., Stuckey, R., Antrobus, K., Kimber, I., and Orphanides, G. (2005). Anti-proliferative effect of estrogen in breast cancer cells that re-express ERalpha is mediated by aberrant regulation of cell cycle genes. Journal of molecular endocrinology 34, 535-551.
    Norgett, E. E., and Kelsell, D. P. (2002). SPINK5: both rare and common skin disease. Trends Mol Med 8, 7.
    Onn, I., Aono, N., Hirano, M., and Hirano, T. (2007). Reconstitution and subunit geometry of human condensin complexes. EMBO J 26, 1024-1034.
    Paech, K., Webb, P., Kuiper, G. G., Nilsson, S., Gustafsson, J., Kushner, P. J., and Scanlan, T. S. (1997). Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science (New York, NY 277, 1508-1510.
    Pemberton, A. D., McEuen, A. R., and Scudamore, C. L. (2001). Characterisation of tryptase and a granzyme H-like chymase isolated from equine mastocytoma tissue. Veterinary immunology and immunopathology 83, 253-267.
    Pentecost, B. T., Bradley, L. M., Gierthy, J. F., Ding, Y., and Fasco, M. J. (2005). Gene regulation in an MCF-7 cell line that naturally expresses an estrogen receptor unable to directly bind DNA. Molecular and cellular endocrinology 238, 9-25.
    Peters, G., Fantl, V., Smith, R., Brookes, S., and Dickson, C. (1995). Chromosome 11q13 markers and D-type cyclins in breast cancer. Breast cancer research and treatment 33, 125-135.
    Retief, J. D. (2000). Phylogenetic analysis using PHYLIP. Methods Mol Biol 132, 243-258.
    Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., and Chinnaiyan, A. M. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia (New York, NY 6, 1-6.
    Safe, S., and Kim, K. (2008). Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. Journal of molecular endocrinology 41, 263–275.
    Schultz-Norton, J. R., Ziegler, Y. S., and Nardulli, A. M. (2011). ERalpha-associated protein networks. Trends Endocrinol Metab 22, 124-129.
    Shang, Y. (2006). Molecular mechanisms of oestrogen and SERMs in endometrial carcinogenesis. Nature reviews 6, 360-368.
    Shang, Y. F., Hu, X., DiRenzo, J., Lazar, M. A., and Brown, M. (2000). Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell 103, 843-852.
    Sharma, D., Saxena, N. K., Davidson, N. E., and Vertino, P. M. (2006). Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer research 66, 6370-6378.
    Sharon, C., Tirindelli, M. C., Mannucci, P. M., Tripodi, A., and Mariani, G. (1986). Homozygous protein C deficiency with moderately severe clinical symptoms. Thromb Res 41, 483-488.
    Simpson, J. C., Wellenreuther, R., Poustka, A., Pepperkok, R., and Wiemann, S. (2000). Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep 1, 287-292.
    Sprecher, E., Chavanas, S., DiGiovanna, J. J., Amin, S., Nielsen, K., Prendiville, J. S., Silverman, R., Esterly, N. B., Spraker, M. K., Guelig, E., et al. (2001). The spectrum of pathogenic mutations in SPINK5 in 19 families with Netherton syndrome: implications for mutation detection and first case of prenatal diagnosis. J Invest Dermatol 117, 179-187.
    Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., et al. (2005). A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968.
    Tandon, A. K., Clark, G. M., Chamness, G. C., Chirgwin, J. M., and McGuire, W. L. (1990). Cathepsin D and prognosis in breast cancer. The New England journal of medicine 322, 297-302.
    Tcheng, W. Y., Dovat, S., Gurel, Z., Donkin, J., and Wong, W. Y. (2008). Severe congenital protein C deficiency: description of a new mutation and prophylactic protein C therapy and in vivo pharmacokinetics. Journal of pediatric hematology/oncology 30, 166-171.
    Tomita, N., Izumoto, Y., Horii, A., Doi, S., Yokouchi, H., Ogawa, M., Mori, T., and Matsubara, K. (1989). Molecular cloning and nucleotide sequence of human pancreatic prechymotrypsinogen cDNA. Biochemical and biophysical research communications 158, 569-575.
    Torres-Rosado, A., O'Shea, K. S., Tsuji, A., Chou, S. H., and Kurachi, K. (1993). Hepsin, a putative cell-surface serine protease, is required for mammalian cell growth. Proc Natl Acad Sci U S A 90, 7181-7185.
    Tsunoda, N., Kokuryo, T., Oda, K., Senga, T., Yokoyama, Y., Nagino, M., Nimura, Y., and Hamaguchi, M. (2009). Nek2 as a novel molecular target for the treatment of breast carcinoma. Cancer Science 100, 111-116.
    Tsurutani, N., Kubo, M., Maeda, Y., Ohashi, T., Yamamoto, N., Kannagi, M., and Masuda, T. (2000). Identification of critical amino acid residues in human immunodeficiency virus type 1 IN required for efficient proviral DNA formation at steps prior to integration in dividing and nondividing cells. J Virol 74, 4795-4806.
    Turnbull, C., Ahmed, S., Morrison, J., Pernet, D., Renwick, A., Maranian, M., Seal, S., Ghoussaini, M., Hines, S., Healey, C. S., et al. (2010). Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42, 504-507.
    van 't Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H. L., van der Kooy, K., Marton, M. J., Witteveen, A. T., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530-536.
    Varlakhanova, N., Snyder, C., Jose, S., Hahm, J. B., and Privalsky, M. L. (2010). Estrogen receptors recruit SMRT and N-CoR corepressors through newly recognized contacts between the corepressor N terminus and the receptor DNA binding domain. Mol Cell Biol 30, 1434-1445.
    Wagrowska-Danilewicz, M., and Danilewicz, M. (2003). Immunoexpression of perforin and granzyme B on infiltrating lymphocytes in human renal acute allograft rejection. Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia 23, 538-544.
    Wahlberg, P., Nylander, A., Ahlskog, N., Liu, K., and Ny, T. (2008). Expression and localization of the serine proteases HtrA1, PRSS23, and PRSS35 in the mouse ovary. Endocrinology.
    Wallrapp, C., Hahnel, S., Muller-Pillasch, F., Burghardt, B., Iwamura, T., Ruthenburger, M., Lerch, M. M., Adler, G., and Gress, T. M. (2000). A novel transmembrane serine protease (TMPRSS3) overexpressed in pancreatic cancer. Cancer research 60, 2602-2606.
    Watanabe, M., Yanagisawa, J., Kitagawa, H., Takeyama, K., Ogawa, S., Arao, Y., Suzawa, M., Kobayashi, Y., Yano, T., Yoshikawa, H., et al. (2001). A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J 20, 1341-1352.
    Wei, C., Geras-Raaka, E., Marcus-Samuels, B., Oron, Y., and Gershengorn, M. C. (2005). Trypsin and thrombin accelerate aggregation of human endocrine pancreas precursor cells. J Cell Physiol.
    Wu, Q., and Parry, G. (2007). Hepsin and prostate cancer. Front Biosci 12, 5052-5059.
    Yamaguchi, N., Okui, A., Yamada, T., Nakazato, H., and Mitsui, S. (2002). Spinesin/TMPRSS5, a novel transmembrane serine protease, cloned from human spinal cord. The Journal of biological chemistry 277, 6806-6812.
    Yan, W., Wu, F., Morser, J., and Wu, Q. (2000). Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A 97, 8525-8529.
    Zhang, J., Tu, Y., Lu, L., Lasky, N., and Broze, G. J., Jr. (2008). Protein Z-dependent protease inhibitor deficiency produces a more severe murine phenotype than protein Z deficiency. Blood 111, 4973-4978.
    Zhang, L., Zhao, J., Wang, Z., Wen, W. H., Zhang, Y. H., Wang, C. J., and Yang, A. G. (2003). [Construction and expression of recombinant antibody/granzyme B containing truncated translocating peptide]. Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology 19, 434-436.
    Zhou, B. P. (2001). Cytoplasmic localization of p21(Cip1/WAF1) by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. (vol 3, pg 245, 2001). Nature Cell Biology 3, 438-438.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE