簡易檢索 / 詳目顯示

研究生: 莊琬婷
Wan-Ting Chuang
論文名稱: 降-升壓切換式整流器之研製
Design and implementation of a buck-boost switch-mode rectifier
指導教授: 廖聰明博士
Dr. Chang-Ming Liaw
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 166
中文關鍵詞: 切換式整流器降-升壓式額定分析功因校正控制電流控制電壓控制量化電壓負載調控強健控制非線性行為EMTP模擬
外文關鍵詞: Switch-mode rectifier, buck-boost, rating analysis, power factor correction, current control, voltage control, quantitative voltage load regulation control, robust control, nonlinear behavior, EMTP simulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 切換式整流器已逐漸被用為許多電力電子設備之前級轉換器,而降-升壓切換式整流器具有許多特點及特殊應用場合,因此,本論文旨在於從事降-升壓切換式整流器之研製及其動態控制。首先了解功因校正控制之基本事務、控制方式及常用規範。接著概覽切換式整流器之ㄧ些實用事務,包括其分類、可能電路之比較特性及控制機構等。尤其探究各型降-升壓切換式整流器之組成特性及其應用例。
    眾所周知,爲使所開發之電力電子電路兼具低成本及強健操控特性,其組成元件額定之妥適決定係非常重要者。本論文先從事理想切換式整流器之元件額定推導及評定,接著修正此推導結果,在考慮切換頻率漣波成分下,得到實際切換式整流器組成元件額定之準確估算。然後依據此結果設計所研習切換式整流器之組成元件。並以一些電磁暫態程式(ElectroMagnetic Transients Program, EMTP)模擬及實驗結果確認所推導結果之正確性,以及顯示所組立切換式整流器之性能。
    在動態控制方面,電流及電壓控制迴路各自之比例積分迴授控制器先依所欲之控制要求妥善予以設計。接著為增進系統對抗不確定動態、參數及工作狀況變化以及擾動等之強健性,再輔加一簡單之強健控制架構。所提強健控制器關鍵參數之決定折衷考量了控制性能、雜訊干擾效應及非線性行為之影響。本論文所提控制技巧之有效性及所研製切換式整流器之操控性能均以一些模擬及實測結果予以驗證。


    Switch-mode rectifier (SMR) has been gradually employed as a front-end stage of various power electronic equipments. And the buck-boost SMR possesses many distinguished features and specific applications. Thus this thesis is mainly concerned with the development of a buck-boost SMR and its dynamic control. First, the fundamentals of power factor correction issues and control approaches are reviewed, and some commonly referred standards are surveyed. Then the overview of practical issues for SMRs is made, including the classifications and comparative features of possible SMR circuits and control schemes. Particularly, the circuit configurations, features and applications of various types of buck-boost SMRs are explored.

    As generally recognized, the proper rating determination for power converter circuit components is very important to yield the circuit with cost-effective and robust operation. In this thesis, the component rating derivation and assessment of an ideal SMR are first made. Then the derivation is modified to accurately estimate the component ratings of an actual buck-boost SMR considering the switching frequency ripples. According to the derived results, the constituted components of the studied SMR are designed. Some simulated results using ElectroMagnetic Transients Program (EMTP) and measured results are provided to confirm the correctness of the derived formulas and to demonstrate the performance of the established SMR.

    As to the dynamic control, in both of the current and voltage control schemes, the proportional-plus-integral (PI) feedback controller is first properly designed according to its control requirements. Then it is augmented with a simple robust control scheme to increase the robustness against the system uncertainties, the parameter and operating condition changes and the disturbances. In performing the robust controller design, its key parameters are determined taking into account the compromise between the control performance, the effects of contaminated noises and the nonlinear behaviors. Validity of the proposed control approach and the performance of the developed SMR are confirmed by some simulation and experimental results.

    ACKNOWLEDGEMENT………………………………………………… I ABSTRACT…………………………………………………………… II LIST OF CONTENTS………………………………………………… III LIST OF FIGURES………………………………………………… V LIST OF TABLES…………………………………………………… X LIST OF SYMBOLS………………………………………………… XI CHAPTER 1 INTRODUCTION……………………………………… 1 CHAPTER 2 POWER FACTOR CORRECTION FOR POWER ELECTRONIC EQUIPMENTS………………………………………… 6 2.1 Introduction………………………………… 6 2.2 Line Drawn Power Quality Requirements… 6 2.2.1 Power Quality Computations……………… 6 2.2.2 Harmonic Current Standards……………… 10 2.3 Traditional Rectifiers and Passive Filtering……………………………………… 15 2.4 Active Power Filter………………………… 19 2.5 Switch-Mode Rectifier……………………… 19 CHAPTER 3 OVERVIEW OF GENERAL ISSUES FOR SMRs........ 25 3.1 Introduction………………………………… 25 3.2 Classifications of SMRs…………………… 25 3.3 Possible Buck-Boost SMRs………………… 28 3.4 Typical Applications of Buck-Boost SMRs 34 3.5 Control Schemes……………………………… 36 CHAPTER 4 COMPONENT RATING ANALYSIS AND DESIGN OF THE BUCK-BOOST SMR…………………………………… 45 4.1 Introduction………………………………… 45 4.2 Component Current Ratings of Ideal SMRs 45 4.3 Estimated Component Current Ratings of Actual SMRs…………………………………… 53 4.4 Voltage Ratings……………………………… 71 4.5 Design of Capacitor………………………… 71 4.6 Implementation and Results……………… 72 CHAPTER 5 CONTROL SCHEMES…………………………………… 84 5.1 Introduction………………………………… 84 5.2 The Proposed Control Scheme and Problem Statements…………………………………… 84 5.3 Current-loop: Conventional Current- controlled PWM Scheme……………………… 86 5.4 Current-loop: Robust Current-controlled PWM Scheme………………………………………… 97 5.5 Voltage-loop: Quantitative Regulation Control………………………………………… 108 5.5.1 Dynamic Model Estimation………………… 113 5.5.2 Quantitative Design for PI Feedback Controller.…………………………… 115 5.6 Voltage-loop: Robust Regulation Control 121 5.6.1 Control Scheme and Methodology………… 121 5.6.2 Introductory Nonlinear Behavior………… 126 5.6.3 Determination of Robust Control Weighting Factor…………………………………………128 5.6.4 Robust Voltage Control Dynamic Response 132 CHAPTER 6 CONCLUSIONS………………………………… 157 REFERENCES…………………………………………………… 159

    A. Power electronics
    [1] N. Mohan, T. M. Undeland and W. P. Robbins, Power
    Electronics Converters, Applications and Design, 3rd
    ed., New York, John Wiley & Sons, Inc., 2003.
    [2] R. W. Erickson and D. Maksimovic, Fundamentals of power
    electronics, 2nd ed., Kluwer Academic Publishers, 2001.
    [3] L. Cividino, “Power factor, harmonic distortion;
    causes, effects and considerations,” in Proc. INTELEC
    Conf., pp. 506-513, 1992.
    [4] A. R. Prasad, P. D. Ziogas and S. Manias, “A novel
    passive waveshaping method for single-phase diode
    rectifier,” IEEE Trans. Ind. Electron., vol. 37, no.
    3, pp. 521-530, 1990.
    [5] I. Takahashi and H. Haga, “Inverter control method of
    IPM motor to improve power factor of diode rectifier,”
    in Proc. PCC Osaka ‘02, vol. 1, pp. 142-147, 2002.
    [6] IEC 1000-3-2, International Standard, Part 3: Limits-
    Section 2: Limit for harmonic current emission
    (equipment input current 16A per phase), 1995.

    B. Active power filter
    [7] L. Moran, P. Werlinger, J. Dixon and R. wallace, “A
    Series active power filter which compensates current
    harmonics and voltage unbalance simultaneously,” in
    Proc. IEEE PESC ‘95, pp. 222-227, 1995.
    [8] L. Malesani, L. Rossetto and P. Tenti, “Active power
    filter with hybrid energy storage,” IEEE Trans. Power
    Electron., vol. 6, pp. 392-397,1991.
    [9] M. V. Ataide and J. A. Pomilio, “Single-phase shunt
    active filter: a design procedure considering harmonics
    and EMI standards,” in Proc. IEEE ISIE ‘97, vol. 2,
    pp. 422-427, 1997.
    [10] H. Fujita and H. Akagi, “The unified power quality
    condition: the integration of series-and shunt- active
    filter,” IEEE Trans. Power Electron., vol. 13, pp.
    315-322, 1998.
    [11] D. H. Chen and S. J. Xie, “Review of the control
    strategies applied to active power filters,” in Proc.
    IEEE DRPT ‘04, vol. 2, pp. 666-670, 2004.
    [12] M. Sedighy, S. B. Dewan and F. P. Dawson, “A robust
    digital current control method for active power
    filters,” IEEE Trans. Ind. Applicat., vol. 36, pp.
    1158-1164, 2000.
    [13] K. Nishida and M. Nakaoka, “Deadbeat current control
    with adaptive predictor for three-phase voltage-source
    active power filter,” in Proc. IEEE PESC ‘04, vol.
    2, pp. 1010-1016, 2004.
    C. Switch-mode rectifiers
    [14] A. Kandianis and S. N. Manias, “A comparative
    evaluation of single-phase SMR converters with active
    power factor correction,” in Proc. IEEE IECON ‘94,
    pp. 244-249, 1994.
    [15] J. Sebastian, M. Jaureguizar and M. Uceda, “An
    overview of power factor correction in single-phase
    off-line power supply systems,” in Proc. IEEE IECON
    ‘94, pp.1688-1693, 1994.
    [16] W. Huai and I. Batarseh, “Comparison of basic
    converter topologies for power factor correction,” in
    Proc. IEEE Southeastcon ‘98, pp. 348-353, 1998.
    [17] G. A. Karvelis, S. N. Manias and G. Kostakis, “A
    comparative evaluation of power converters used for
    current harmonics elimination,” in Proc. IEEE HQP
    ‘98, vol. 1, pp. 227-232, 1998.
    [18] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddada, A.
    Pandey and D. P. Kothar. “A revew of single-phase
    improved power quality AC-DC converters,” IEEE Trans.
    Ind. Electron., vol. 50, pp. 962-981, 2003.
    [19] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J.
    Uceda, “Single phase power factor correction: a
    survey,” IEEE Trans. Power Electron., vol. 18, pp.
    749- 755, 2003.
    [20] M.S. Dawande and G.K. Dubey, “Single phase switch
    mode rectifiers”, IEEE PEDS ‘96, pp 637-543, 1996.
    [21] B. N. Singh, P. Jain and G. Joos, “Three-phase AC/DC
    regulated power supplies: a comparative evaluation of
    different topologies,” in Proc. IEEE APEC ‘00, vol.
    1, pp. 513-518, 2000.
    [22] M. H. L. Chow, C. K. Tse and Y. S. Lee, “An efficient
    PFC voltage regulator with reduced redundant power
    processing,” in Proc. IEEE PESC ‘99, vol. 1, pp. 87-
    92, 1999.
    [23] T. Yoshida, O. Shizuka, O. Miyashita and K Ohniwa,
    “An improvement technique for the efficiency of high-
    frequency switch-mode rectifiers,” IEEE Trans. Power
    Electron., vol. 15, pp. 1118-1123, 2000.
    [24] L. Dixon, “High power factor switching pre-regulator
    design optimization,” in Unitrode Seminar, SEM-700,
    pp. 7/1- 7/2, 1990.
    [25] L. Dixon, “Control loop design,” in Unitrode Seminar
    SEM-800, pp. 7/1-7/10, 2001.
    [26] C. M. Liaw, T. H. Chen and W. L. Lin, “Dynamic
    modeling and control of a step up/down switching-mode
    rectifier,” IEE Proc. Electr. Power Applcat., vol.
    146, pp. 377-324, 1999.
    [27] B. Choi, S. S. Hong and H. Park, “Modeling and small-
    signal analysis of controlled on-time boost power-
    factor-correction circuit,” IEEE Trans. Ind.
    Electron., vol. 48, pp. 136-142, 2001.
    [28] Z. Liang, B. Lu, J. D. van Wyk and F. C. Lee,
    “Integrated CoolMOS FET/SiC-diode module for high
    performance power switching,” IEEE Trans. Power
    Electron., vol. 20, pp. 679-686, 2005.
    D. Buck-boost type SMRs
    [29] T. Iida, G. Majumdar, H. Mori and H. Iwamoto,
    “Constant output voltage control method for buck-boost
    type switched mode rectifier with fixed switching
    pulse pattern,” in Proc. IEEE ICIT ‘96, pp. 266-268,
    1996.
    [30] K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori
    and F. Ueda, “A comparison of various buck-boost
    converters and their application to PFC,” in Proc.
    IEEE IECON ‘02, vol. 1, pp.30-36, 2002.
    [31] J. Chen, D. Maksimovic and R. Erickson, “A new low-
    stress buck-boost converter for universal-input PPC
    applications,” in Proc. IEEE APEC ’01, vol. 1, pp.
    343-349, 2001.
    [32] J. Chen, D. Maksimovic and R. Erickson, “Buck-boost
    PWM converters having two independently controlled
    switches,” in Proc. IEEE PESC ‘01, vol. 2, pp. 736–
    741, 2001.
    [33] A. R. Prasad, P. D. Ziogas and S. Manias, “A new
    active power factor correction method for single-phase
    buck-boost ac-dc converter,” in Proc. IEEE APEC ‘92,
    pp. 814-820, 1992.
    [34] V. F. Pires and J. F. Silva, “Three-phase single-
    stage four-switch PFC buck-boost-type rectifier,”
    IEEE Trans. Ind. Electron., vol. 52, pp. 444- 453,
    2005.
    [35] R. Ayyanar, N. Mohan and J. Sun, “Single-stage three- phase power-factor-correction circuit using three
    isolated single-phase SEPIC converters operating in
    CCM,” in Proc. IEEE PESC ‘00, vol. 1, pp. 353-358,
    2000.
    [36] K. Jirasereeamornkul, Y. Roungraungpalangkul and K.
    Chammongthai, “A single stage single switch power
    factor correction converter,” in Proc. IEEE ISCAS
    ‘01, vol. 3, pp. 397-400, 2001.
    [37] R. Erickson, M. Madigan and S. Singer, “Design of a
    simple high-power- factor rectifier based on the
    flyback converter,” in Proc. IEEE APEC ‘90, pp. 792-
    801, 1990.
    [38] Y. Nishida, S. Motegi and A. Maeda, “A single-phase
    buck-boost AC-to-DC converter with high-quality input
    and output waveforms,” in Proc. IEEE ISIE ‘95, vol.
    1, pp. 433-438, 1995.
    [39] Y. Nishida, A. Maeda and H. Tomita, “A new
    instantaneous-current controller for three-phase buck-
    boost and buck converters with PFC operation,” in
    Proc. IEEE APEC ‘95, pp. 875-883, 1995.
    [40] A. Nakajima, S. Motegi and A. Maeda, “Comparison of
    the characteristics between buck and buck-boost high-
    power-factor converters with pulse-space-modulation,”
    in Proc. IEEE IECON ‘99, vol. 1, pp. 168-173, 1999.
    [41] O. Lopez, L. Garcia de Vicuna, M. Castilla, J. Matas
    and M. Lopez, “Sliding-mode-control design of a high-
    power-factor buck-boost rectifier,” IEEE Trans. Ind.
    Electron., vol. 46, pp. 604-612, 1999.
    [42] B. S. Lee and R. Krishnan, “A variable voltage
    converter topology for permanent-magnet brushless DC
    motor drives using buck-boost front-end power stage,”
    in Proc. IEEE ISIE ‘99, vol.2, pp. 689-694, 1999.
    [43] W. Guo and P. K. Jain, “A power-factor-corrected AC-
    AC inverter topology using a unified controller for
    high-frequency power distribution architecture,” IEEE
    Trans. Ind. Electron., vol. 51, pp. 874-883, 2004.
    [44] L. Brush, “Distributed power architecture demand
    characteristics,” in Proc. IEEE APEC ‘04, vol. 1,
    pp. 342-345, 2004.
    [45] P. Lindman, “Powering tomorrow's data internetworking
    systems,” in Proc. IEEE INTELEC ‘00, pp. 506-511,
    2000.
    [46] L. C. G. de Freitas, E. E. A. Coelho, J. B. Vierira
    Jr., M. G. Simoes, and L. C. de Freitas, “A single-
    stage PFC converter applied as an electronic ballast
    for fluorescent lamps,” in Proc. IEEE APEC ‘04, vol.
    1, pp. 164- 169, 2004.
    [47] M. Ponce, A. J. Martinez, J. Correa and J. Arau,
    “Evaluation of an improved input current shaper used
    as power factor corrector in electronic ballast,” in
    Proc. IEEE ISCAS ‘02, vol. 4, pp. 349-352, 2002.
    [48] J. O’Connor, “Dimmable cold-cathode fluorescent lamp
    ballast design using the UC3871,” in Taxis Instrument
    Inc., 1999.
    E. Soft-switching SMRs
    [49] Z. Xunwei, M. Elmore and F.C.Lee, “Comparison of
    single-phase active-clamped PFC converters,” in Proc.
    IEEE PESC ‘97, vol.1 , pp. 115- 120, 1997.
    [50] K. Wang, F. C. Lee, G. Hua and D. Borojevic, “A
    comparative study of switching losses of IGBTs under
    hard-switching, zero-voltage switching and zero-
    current-switching,” in Proc. IEEE PESC ‘94, vol. 2,
    pp. 1196- 1204, 1994.
    [51] S. Y. R. Hui, K. W. E. Cheng and S. R. N. Prakash, “A
    fully soft-switched extended-period quasi-resonant
    power-factor-correction circuit,” IEEE Trans. Power
    Electron., vol. 12, pp. 922-930, 1997.
    [52] I. D. Kim and B. K. Bose, “New ZCS turn-on and ZVS
    turn-off unity power factor PWM rectifier with reduced
    conduction loss and no auxiliary switches,” IEE Proc.-
    Electr. Power Applcat., vol. 147, pp. 146-152, 2000.
    [53] S. H. Li and C. M. Liaw, “Modelling and quantitative
    direct digital control for a DSP-based soft-switching-
    mode rectifier,” IEE Proc.-Electr. Power Applicat.,
    vol. 150, pp. 21-30, 2003.
    [54] K. Taniguchi, H. Baba, M. Ogawa and M. Kawaji,
    “Driving circuit for single-pulse soft-switching PFC
    converter,” in Proc. PCC-Osaka, pp. 1232- 1237, 2002.
    [55] C. M. Liaw and T. H. Chen, “A soft-switching mode
    rectifier with power factor correction and high
    frequency transformer link,” IEEE Trans. Power
    Electron., vol. 5, pp. 644-654, 2000.
    [56] H. F. Liu, Y. H. Liu and Y. Y. Tzou, “Implementation
    of ZVT soft switching technique in a single-phase PFC
    rectifier for server power supply,” in Proc. IEEE
    PIEMC ‘00, vol. 5, pp. 584-589, 2000.
    [57] Y. Jang, D. L. Dillman and M. M. Jovanovic, “Soft-
    switched PFC boost rectifier with integrated ZVS two-
    switch forward converter,” in Proc. IEEE APEC ‘05,
    vol. 2, pp. 1139-1144, 2005.
    [58] Y. Zhang and P. C. Sen, “A new soft-switching
    technique for buck, boost, and buck-boost
    converters,” IEEE Trans. Ind. Applicat. vol. 39, pp.
    1775- 1782, 2003.
    [59] H. Matsuo, H. Watanabe, F. Kurokawa and L. Tu,
    “Analysis of the novel soft-switching buck-boost type
    AC-DC converter using magnetic coupling,” in Proc.
    IEEE PESC ‘00, vol. 3, pp. 1239-1246, 2000.
    [60] G. Moschopoulos and P. K. Jain, “A novel single-phase
    soft-switched rectifier with unity power factor and
    minimal component count,” IEEE Trans. Ind. Electron.,
    vol. 51, pp. 566-576, 2004.
    F. Rating assessment
    [61] R. Redl and L. Balogh, “RMS, DC, peak, and harmonic
    currents in high- frequency power-factor correctors
    with capacitive energy storage,” in Proc. IEEE APEC
    ‘92, pp. 533-540, 1992.
    [62] J. J. Spangler and A. K. Behera, “A comparison
    between hysteretic and fixed frequency boost
    converters used for power factor correction,” n Proc.
    IEEE APEC ‘93, pp. 281-286, 1993.
    [63] J. S. Lai and D. Chen, “Design consideration for
    power factor correction boost converter operating at
    the boundary of continuous conduction mode and
    discontinuous conduction mode,” in Proc. IEEE APEC
    ‘93, pp. 267-273, 1993.
    [64] AWG Table:http://www.pupman.com/listarchives/1998/
    April/msg00222.html
    [65] Core: http://www.micrometals.com/parts_index.html
    G. Dynamic control
    [66] E. Rodriguez, O. Garcia, J. A. Cobos, J. Arau and J.
    Uceda, “A single-stage rectifier with PFC and fast
    regulation of output voltage,” in Proc. IEEE CIEP
    ‘98, pp. 30-36, 1998.
    [67] D. S. L. Simonetti, J. Sebastian and J. Uceda, “A
    small-signal model for SEPIC, Cuk and flyback
    converters as power factor preregulators in
    discontinuous conduction mode,” in Proc. IEEE PESC
    ‘93, pp. 735-741, 1993.
    [68] J. C. Le Bunetel and M. Machmoum, “Control of boost
    unity power factor correction systems,” in Proc. IEEE
    IECON ‘99, vol. 1, pp. 266-271, 1999.
    [69] M. C. Ghanem, K. Al-Haddad and G. Roy, “A new control
    strategy to achieve sinusoidal line current in a
    cascade buck-boost converter,” IEEE Trans. Ind.
    Electron., vol. 43, pp. 441-449, 1996.
    [70] G. K. Andersen and F. Blaabjerg, “Current programmed
    control of a single phase two-switch buck-boost power
    factor correction circuit,” in Proc. IEEE APEC ‘01,
    vol. 1, pp. 350-356, 2001.
    [71] B. Raymond and J. Sepe, “A unified approach to
    hysteretic and ramp-comparison current controllers,”
    in Conf. Rec. IEEE-IAS Annu. Meeting, pp. 724-731,
    1993.
    [72] C. A. Canesin and I. Barbi, “Analysis and design of
    constant-frequency peak-current-controlled high-power-
    factor boost rectifier with slope compensation,” in
    Proc. IEEE APEC ‘96, pp. 807-813, 1996.
    [73] M. Dawande and G. K. Dubey, “Switching techniques for
    switch mode rectifier,” in Proc. IEEE PEDS ‘99, vol.
    1, pp. 167-173, 1999.
    [74] A. Fontan, S. Ollero, E. de la Cruz and J. Sebastian,
    “Peak current mode control applied to the forward
    converter with active clamp,” in Proc. IEEE PESC
    ‘98, vol. 1, pp. 45-51, 1998.
    [75] F. Mihalic and M. Milanovic, “Wide-band frequency
    analysis of the randomized boost rectifier,” in Proc.
    IEEE PESC ‘00, pp. 946-951, 2000.
    [76] T. Takeshita, Y. Toyoda and N. Matsui, “Harmonic
    suppression and DC voltage control of single-phase PFC
    converter,” in Proc. IEEE PESC ‘00, vol. 2, pp. 571-
    576, 2000.
    [77] N. Bhiwapurkar, M. Rathi and N. Mohan, “Power factor
    correction circuit for faster dynamics and zero steady
    state error using dual voltage controllers,” in Proc.
    IEEE IECON ‘02, vol. 1, pp. 204-208, 2002.
    [78] J. Luo, M. K. Jeoh, and H. C. Huang, “A new
    continuous conduction mode PFC IC with average current
    mode control,” in PEDS ‘03, vol. 2, pp. 1110- 1114,
    2003.
    [79] M. O. Eissa, S. B. Leeb, G. C. Verghese and A. M.
    Stankovic, “A fast analog controller for a unity-
    power factor AC/DC converter,” in Proc. IEEE APEC
    ‘94, vol. 2, pp. 551-555, 1994.
    [80] O. Lopez, L. G. de Vicuna and M. Castilla, “Sliding
    mode control design of a boost high-power-factor pre-
    regulator based on the quasi-steady-state approach,”
    in Proc. IEEE PESC ‘01, vol. 2, pp. 932-935, 2001.
    [81] L. Rossetto, G. Spiazzi, P. Tenti, B. Fabiano and C.
    Licitra, “Fast-response high-quality rectifier with
    sliding mode control,” IEEE Trans. Power Electron.,
    vol. 9, pp. 146-152, 1994.
    [82] G. Zhu, H. Wei, P. Kornetzky and I. Batarseh, “Small-
    signal modeling of a single-switch AC/DC power-factor-
    correction circuit,” IEEE Trans. Power Electron.,
    vol. 14, pp. 1142-1148, 1999.
    [83] P. Mattavelli, G. Spiazzi and P. Tenti, “Predictive
    digital control of power factor preregulators with
    input voltage estimation using disturbance
    observers,” IEEE Trans. Power Electron., vol. 20, pp.
    140-147, 2005.
    [84] W. Zhang, G. Feng, Y.-F Liu and B. Wu, “DSP
    implementation of predictive control strategy for
    power factor correction (PFC),” in Proc. IEEE APEC
    ‘04, vol. 1, pp. 67-73, 2004.
    [85] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den
    Bossche and J. A. Melkebeek, “Duty-ratio feedforward
    for digitally controlled boost PFC converters,” IEEE
    Trans. Ind. Electron., vol. 52, pp. 108-115, 2005.
    [86] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode
    rectifier with digital robust ripple compensation and
    current waveform controls,” IEEE Trans. Power
    Electron., vol. 19, pp. 560-566, 2004.
    [87] A. Kaletsanos, F. Xepapas, S. Xepapas and S. N.
    Manias, “Nonlinear control technique for three-phase
    boost AC/DC power converter,” in Proc. IEEE PESC
    ‘03, vol. 3, pp. 1080-1085, 2003.
    [88] C. M. Liaw and S. J. Chiang, “Robust control of multi-
    module current-mode controlled converters,” IEEE
    Trans. Power Electron., vol. 8, pp. 455-465, 1993.
    [89] C. M. Liaw, “System parameter estimation from sampled
    data,” Control Dynamic system, vol. 63, pp. 161-195,
    1994.
    H. Nonlinear dynamics
    [90] M. Orabi and T. Ninomiya, “Nonlinear dynamics of
    power-factor- correction converter,” IEEE Trans. Ind.
    Electron., vol. 50, pp. 1116-1125, 2003.
    [91] C. K. Tse and M. Di Bernardo, “Complex behavior in
    switching power converters,” in Proc. IEEE, vol. 90,
    pp. 768-781, 2002.
    [92] K. W. E. Cheng, M. J. Liu, J. Wu and N. C. Cheung,
    “Study of bifurcation and chaos in the current-mode
    controlled buck-boost DC-DC converter,” in Proc. IEEE
    IECON ‘01, vol. 2, pp. 838–843, 2001.
    [93] K. W. E. Cheng, M. Liu and J. Wu, “Experimental study
    of bifurcation and chaos in the buck-boost
    converter,” Proc. IEE-Elect. Power Applicat., vol.
    150, pp. 45-61, 2003.
    [94] H. Ren, C. Jin and T. Ninomiya, “Low-frequency
    bifurcation behaviors of PFC converter,” in Proc.
    IEEE ISCAS ‘05, pp. 2827-2830, 2005.
    [95] M. Orabi, T. Ninomiya and J. Chunfeng, “Novel
    developments in the study of nonlinear phenomena in
    power factor correction circuits,” in Proc. IEEE
    IECON ‘02, vol. 1, pp. 209-215, 2002.
    [96] S. K. Mazumder, A. H. Nayfeh and D. Boroyevich,
    “Theoretical and experimental investigation of the
    fast- and slow-scale instabilities of a DC-DC
    converter,” IEEE Trans. Power Electron., vol. 16, pp.
    201-216, 2001.
    [97] H. H. C. Iu, Y. Zhou and C. K. Tse, “Fast-scale
    instability in a PFC boost converter under average
    current-mode control,” Int. J. Circuit Theory Appl.,
    vol. 31, pp. 611-624, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE