研究生: |
劉邦淳 Liu, Pang-Chun |
---|---|
論文名稱: |
高效率半固態染料敏化太陽能電池之研究 High Performance Quasi-solid-state Dye-sensitized Solar Cells |
指導教授: |
開執中
李欣芳 |
口試委員: |
季昀
丁志明 童永樑 開執中 李欣芳 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 120 |
中文關鍵詞: | 染料敏化太陽能電池 、半固態電解質 、奈米顆粒 、光電轉換效率 、長效穩定度 |
外文關鍵詞: | Dye-sensitized solar cells, quasi-solid state electrolyte, nanoparticles, photovoltaic performance, long-term stability |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,染料敏化太陽能電池(Dye-sensitized Solar Cells, DSCs)之電解質研究焦點主要集中於改善液態電解質之易揮發、外漏等缺點,以提高電池元件長期穩定性,其中半固態電解質不但流動性低,更可於大面積元件製作上應用連續塗佈製程大幅降低生產成本,但目前在光電轉換效率上仍難突破液態電解質。本研究利用數種無機奈米顆粒 (inorganic nanoparticles) 或聚二氟乙烯-六氟丙烯共聚高分子 (PVDF-HFP) 摻混入以 1,2-二甲基-3-丙基咪唑碘(DMPII) 為主之液體電解質,加以製備不同奈米粒子型與凝膠型半固態電解質,期望可改變 DSCs 元件之離子傳導機制,在降低電解質流動性的同時,亦可大幅提升元件光電轉換效率。
本實驗先藉由碘與添加劑之濃度調整,分別得到以乙□(acetonitrile)與3-甲氧基丙□(3-methoxypropionitrile) 作為溶劑之最佳化組成液態電解質,再分別混摻入 SiO2 奈米顆粒、PVDF-HFP /TiO2 奈米複合高分子以及不同粒徑與表面修飾之 TiO2 奈米顆粒,製備數種半固態電解質,並分析不同膠化劑種類、膠化劑含量與溶劑系統對於電解質之導電度、離子擴散係數和光電轉換效率的影響。研究結果發現,於液體電解質系統中加入 TiO2 奈米顆粒,除降低電解質與二氧化鈦光電極之間的阻抗與電解質本身的擴散阻抗而增加電池光電流(Jsc)外,亦能減少電子再結合的機率而提升開路電壓(Voc)。在添加 17.5wt.% 的 P25 TiO2 奈米顆粒於乙□系統之液態電解質時,在入射光強度為 100mW/cm2 的照射下,光電轉換效率可達 9.24 %。在二氧化鈦光電極以 TiCl4 進行處理後,其光電轉換效率(η)更可達 9.49 %。長效性能測試方面,電池元件在室溫 30℃下放置 1000 小時,此半固態 DSCs 穩定性明顯優於使用液態電解質之電池元件。
In this study, various nanoparticles and fluorine polymer were employed to solidify 1,2-dimethyl-3-propyl-imidazolium iodide (DMPII) based liquid electrolytes in dye-sensitized solar cells (DSCs). A guideline to prepare high-performance clay-like or gel-like electrolytes having high content nanoparticles or polymer was prepared for DSCs. We aimed at fabricating ionic paths between nanoparticles or polymer by chemical bondings.
Photovoltaic performances of DSCs containing these quasi-solid state electrolytes were studied as well as the influence of redox couple, solvents, additives and the content of nanoparticles or fluorine polymer. Efficiencies of 9.24% and 7.48% were recorded for the AN and MPN-based electrolytes solidified by 17.5% P25 TiO2 nanoparticles, respectively under illumination of simulated AM 1.5 (100mW/cm-2). After TiCl4 treatment for the TiO2 photo-electrode, the conversion efficiency of a DSCs fabricated using quasi-solid state electrolyte was 9.49%, with values of Jsc, Voc, and FF of 18.08(mA/cm-2), 0.78 V, and 67%, respectively. From the electrochemical impedance spectroscopy (EIS) analysis, it was found that the enhanced conversion efficiencies of the DSCs were associated with the decrease in charge transfer resistance at the TiO2/dye/electrolyte and Warburg diffusion resistance. On the other hand, nanoparticles can inhibit the charge recombination, enhancing the open-circuit voltage of the cells. The long-term stability of these quasi-solid state electrolytes was also studied.
[1] M. Gr□tzel, “Powering the planet”, Nature, 403, 363-364 (2000).
[2] J. Pelly, “Solar cells that harness infrared light”, Environ. Sci. Technol, 39, 151A-152A (2005).
[3] Statistical Review of World Energy 2011 (2011).
[4] M. Gr□tzel, “Photoelectrochemical cells”, Nature, 414, 338-344 (2001).
[5] 王釿鋊, “染料半導體光電池”, 中技社通訊, 41, 5 (2002).
[6] 經濟部太陽光電示範系統資訊網
http://210.69.121.54/moea/Docs/index.html
[7] A. Luque, S .Hegedus, “Handbook of Photovoltaic Science and Engineering”, Inc Net Library (2003).
[8] H. Gerischer, H. Tributsch, “Elecrochemische Untersuchungen zur
spectraleu sensibilisierung von ZnO-Einkristalien”, Ber. Bunsenges. Phys. Chem., 72, 437-445 (1968).
[9] K. Hauffe, H.J. Danzmann, H. Pusch, J. Range, H. Volz, “New
experiments on the sensitization of zinc oxide by means of the electrochemical cell technique”, J. Electrochem. Soc., 117, 993-999 (1970).
[10] H. Tsubomura, M. Matsumara, Nomuray, T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 261, 402 (1976).
[11] S. Chen, S.K. Deb, H. Witzke, US Patent 4, 080, 488 (1978).
[12] B. O’Regan, M. Gr□tzel, “A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, 353, 737-740 (1991).
[13] M. Gr□tzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A:Chemistry, 164, 3-14 (2004).
[14] Displaybank Co., Ltd, “Technology Trend and Market Forecast (2009~2013) ” (2009).
[15] 李佳樺, “染料敏化太陽電池工業化國際會議紀要(上) ”, 工業材料4月刊, 292, 94-99 (2011).
[16] M. A. Green, K. Emery, Y. Hishikawa , W. Warta, “Solar cell efficiency tables (version 37)”, Prog. Photovolt: Res. Appl., 19, 84-92 (2011).
[17] Z. Zhu, J. Yang, S. Kazuhiro, “Direct Splitting of Water under
Visible Light Irradiation with an Oxide Semiconductor
Photocatalyst”, Nature, 414, 625-627 (2001).
[18] D. Matthews, P. Infelta, M. Gr□tzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes”, Sol. Energy Mater. Sol. Cells, 44, 119-155, (1996).
[19] G.P. Smestad, M. Gr□tzel, “Demonstrating Electron Transfer and
Nanotechnology: a Nature Dye-sensitized Nanocrystalline Energy
Converter”, J. Chem. Educ., 75, 752-756 (1998).
[20] M. Gr□tzel, “Applied physics: Solar cells to dye for”, Nature, 421,
586-587 (2003).
[21] A. Kay, M. Gr□tzel, “Photosensitization of Titania Solar Cells with
Chlorophyll Derivatives and Related Natural Porphyrins”, J. Phys.
Chem., 97, 6272-6277 (1993).
[22] D. Cahen, G. Hodes, M. Gr□tzel, J. F. Guillemoles, I. Riess, “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 104, 2053-2059 (2000).
[23] M. K. Nazeeruddin, A. Kay, 1. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gr□tzel, “Conversion of Light to Electricity by cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes”, J. Am. Chem. SOC,115, 6382-6390 (1993).
[24] M. Gr□tzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 3-14 (2004).
[25] Arie Zaban, Suzanne Ferrere, and Brian A. Gregg, “Relative
energetics at the semiconductor/sensitizing dye/electrolyte interface”, J.
Phys. Chem. B, 102, 452-460 (1998).
[26] S. N. Chen, S.K. Deb, H. Witzke, “Unpublished report on project SECSAC (Solar Energy Conversion and Storage Cell)”, Optel Corporation, Princeton, (1975).
[27] M.Gr□tzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorg. Chem., 44, 20, 6841-6851 (2005).
[28] N.G. Park, J. van de Lagemaat, A. J. Frank, “Comparison of Dye-sensitized Rutile and Anatase-Based TiO2 Solar Cells”, J. Phys. Chem. B, 104, 8989-8994, (2000).
[29] T. Ma, M. Akiyama, E. Abe, and I. Imai,“High-Efficiency Dye-Sensitized Solar Cell Based on a Nitrogen-doped Nanostructred Titania Electride”,Nano Lett., 5, 12, 2543-2547 (2005).
[29]簡國明, 洪長春, 吳典熹, 王永銘, 藍怡平, “奈米二氧化鈦專利地
圖及分析”, 行政院國家科學委員會 (2003).
[30]黃春煇, 李富友, 黃岩誼, “光電功能超薄膜”, 曉園出版社, (2006).
[31] A. L. Linsebigler, G. Lu, and J. T. Yates., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev, 95, 735-758 (1995).
[32] P. M. Sommeling, B. C. O’Regan, R. R. Haswell, H. J. P. Smit,N. J. Bakker, J. J. T. Smits, J. M. Kroon, and J. A. M. van Roosmalen, “Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 110, 19191-19197 (2006).
[33] Q. Wang, J.E. Moser, and M. Gr□tzel, “Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 109, 14945-14953 (2005).
[34] H. Hoppe, N. Arnold, D. Meissnera, N.S. Sariciftcia, “Modeling of optical absorption in conjugated polymeryfullerene bulkheterojunction
plastic solar cells”, Thin Solid Films, 452, 589-592 (2004).
[35] J. Bisquert, F. F. Santiago, I. M. Sero’, G. G. Belmonte, and S. Gime’nez, “Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements”, J. Phys. Chem. C, 113, 17278-17290 (2009).
[36] M. L.Rosenblut , N. S. Lewis, “ Ideal” Behavior of the Open Circuit Voltage of Semiconductor/Liquid Junctions”, J. Phys. Chem.,93, 3735 (1989).
[37] A.Kumer, P. G.Santangelo, N. S. Lewis, “Electrolysis of Water at SrTIO, Photoelectrodes: Distlngulshlng between the Statistical and Stochastic Formalisms for Electron-Transfer Processes In Fuel-Formlng Photoelectrochemical Systems”, J. Phys, Chem., 96, 835 (1992).
[38] S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R.Charvet, P. Comte, M. K. Nazeeruddin, P. P□chy, M. Takata, H. Miura, S. Uchida, and M. Gr□tzel, “High-Efficiency Organic-Dye-Sensitized Solar CellsControlled by Nanocrystalline-TiO2 Electrode Thickness”, Adv. Mater., 18, 1202-1205 (2006).
[39] A. Mathew, G. M. Rao, N. Munichandraiah, “Effect of TiO2 electrode thickness on photovoltaic properties of dye sensitizedsolar cell based on randomly oriented Titania nanotubes”, Materials Chemistry and Physics, 127, 95-101 (2011).
[40] M.G.Kang, K. S. Ryu, S.O. Chang, N.G. Park, J.S. Hong, and K.J. Kim, “Dependence of TiO2 Film Thickness on Photocurrent-Voltage Characteristics of Dye-Sensitized Solar Cells, Bull. Korean Chem. Soc.,25, 5 (2004).
[41] C.P. Hsu, K.M. Lee, J.T.W. Huang, C.Y. Lin,C.H. Lee, L.P. Wang, S.Y. Tsai, K.C. Ho, “EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells”, Electrochimica Acta, 53, 7514-7522 (2008).
[42] M.C. Kao, H.Z. Chen, S.L. Young, C.Y. Kung, C.C. Lin, “The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells”, Thin Solid Films 517, 5096-5099 (2009).
[43] K.M. Lee, V.Suryanarayanan, J.H. Huang, K.R. J. Thomas, J. T. Lin, K.C. Ho, “Enhancing the performance of dye-sensitized solar cells based on an organic dye by incorporating TiO2 nanotube in a TiO2 nanoparticle film”, Electrochimica Acta, 54, 4123-4130 (2009).
[44] B.O’Regan, J. R. Durrant, P. M. Sommeling, and N. J. Bakker, “Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit”, J. Phys. Chem. C, 111, 14001-14010 (2007).
[45] C. J. Barb□, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M.Gr□tzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, J. Am. Ceram. Soc., 80, 3157-3171, (1997).
[46] M. K. Nazeeruddin, P. Pe’chy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Gr□tzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells”, J. Am. Chem. Soc., 123, 1613-1624 (2001).
[47] K. S. Finnie, J. R. Bartlett, and J. L. Woolfrey, “Vibrational Spectroscopic Study of the Coordination of
(2,2-Bipyridyl-4,4-dicarboxylic acid)ruthenium(II) Complexes to the Surface of Nanocrystalline Titania”, Langmuir, 14, 2744-2749 (1998).
[48] Md. K. Nazeeruddin, P. P’echy and M. Gr□tzel, “Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex”, Chem. Commun., 1705 (1997).
[49] C. Bauer, G. Boschloo, E. Mukhtar, and A. Hagfeldt, “Interfacial Electron-Transfer Dynamics in Ru(tcterpy)(NCS)3-Sensitized TiO2 Nanocrystalline Solar Cells”, J. Phys. Chem. B, 106, 12693-12704 (2002).
[50] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G.Viscardi, P. Liska, S. Ito, B. Takeru, and M. Gr□tzel, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, J. AM. CHEM. SOC., 127, 16835-16847 (2005).
[51] G.Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane, “A channel flow cell system specifically designed to test the effciency of redox shuttles in dye sensitized solar cells”, Solar Energy Materials & Solar Cells, 70, 85, 101 (2001).
[52] P. J. Cameron, L. M. Peter, S. M. Zakeeruddin, “Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells”, Coord Chem Rev., 248, 1447-1453 (2004).
[53] E. Stathatos and P. Lianos, S. M. Zakeeruddin, P. Liska, and M. Graぴ tzel, “A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid”, Chem. Mater., 15, 1825-1829 (2003).
[54] A. Kay, M. Gr□tzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Sol. Energy Mater. & Sol.Cells, 44, 99-117 (1996).
[55] X. Fang, T. Ma, G. Guan, M. Akiyama,T. Kida, E. Abe, “Effect of the thickness of the Pt film coated on a counter electrodeon the performance of a dye-sensitized solar cell”, Journal of Electroanalytical Chemistry, 570, 257-263 (2004).
[56] G. P. Smestad, “Optoelectronics of Solar Cells”, SPIE-The
International Society for Optical Engineering Bellingham Washington,
19-21 (2001).
[57] J. Nelson, “The Physics of Solar Cells”.
[58]莊嘉琛, 太陽能工程-太陽電池篇, 全華科技圖書股份有限公司,
(1997).
[59] Z.S. Wang, K. Sayama, and H. Sugihara, “Efficient Eosin Y Dye-Sensitized Solar Cell Containing Br-/Br3- “, Electrolyte J. Phys. Chem. B, 109, 22449-22455 (2005).
[60] B. V. Bergeron, A. Marton, G. Oskam, and G.J. Meyer, “Dye-Sensitized SnO2 Electrodes with Iodide and Pseudohalide Redox Mediators”, J. Phys. Chem. B, 109, 937-943 (2005).
[61] P. Bonhote, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Gr□tzel, “Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts”, Inorg. Chem., 35, 1168-1178 (1996).
[62] W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y.Wada and S. Yanagida,“Photocurrent-Determining Processes in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes”, J. Phys. Chem. B, 107, 4374-4381 (2003).
[63] W. Kubo, K. Murakoshi, T. Kitamura, S. Yoshida, M. Haruki,K. Hanabusa, H. Shirai, Y. Wada and S. Yanagida, “Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine”, J. Phys. Chem. B, 105, 12809-12815 (2001).
[64] F. Cao, G. Oskam, and P. C. Searson, “A Solid State, Dye Sensitized Photoelectrochemical Cell”, J. Phys. Chem.,99, 17071-17073 (1995).
[65] J. Wu, Z. Lan, D. Wang, S. Hao, J. Lin, Y. Huanga, S. Yin, T. Sato, “Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell”, Electrochimica Acta, 51, 4243-4249 (2006).
[66] O.A. Ileperuma, M.A.K.L. Dissanayake, S. Somasundaram,
“Dye-sensitised photoelectrochemical solar cells with polyacrylonitrilebased solid polymer electrolytes”, Electrochimica Acta, 47, 2801-2807 (2002).
[67] L. Weiying, K. Junjie, L. Xueping, F. Shibi, L. Yuan, W. Guiqiang and X. Xurui, “Quasi-solid-state nanocrystalline TiO2 solar cells using gel network polymer electrolytes based on polysiloxanes”, Chinese Science Bulletin, 48, 7, 646-648 (2003).
[68] M. Li, S. Feng, S. Fang, X. Xiao, X. Li, X. Zhou, Y. Lin, “The use of poly(vinylpyridine-co-acrylonitrile) in polymer electrolytesfor quasi-solid dye-sensitized solar cells”, Electrochimica Acta, 52, 4858-4863 (2007).
[69] J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y.Huang, L. Fang, S. Yin, and T. Sato, “A Thermoplastic Gel Electrolyte for Stable Quasi-Solid-StateDye-Sensitized Solar Cells”, Adv. Funct. Mater., 17, 2645-2652 (2007).
[70] W. Xianga, Y. Fanga, Y. Lina, S. Fanga, “Polymer-metal complex as gel electrolyte for quasi-solid-state dye-sensitized solar cells”, Electrochimica Acta, 56, 1605-1610 (2011).
[71] T. Stergiopoulos, I. M. Arabatzis, G. Katsaros, and P.Falaras, “Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells”, Nano Lett., 2, 11 (2002).
[72] P. Wang, S. M. Zakeeruddin, P. Comte, I. Exnar and M. Gr□tzel, “Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells”, J. AM. CHEM. SOC., 125, 1166-1167 (2003).
[73] M.S. Kang, K.S. Ahn, J.W. Lee,“Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes”, Journal of Power Sources, 180, 896-901 (2008).
[74] Z. Huo, S. Dai, K. Wang, F. Kong, C. Zhang, X. Pan, X. Fang, “Nanocomposite gel electrolyte with large enhanced charge transport properties of an I3-/I- redox couple for quasi-solid-state dye-sensitized solar cells”, Solar Energy Materials & Solar Cells, 91, 1959-1965 (2007).
[75] Y.L Lee, Y.J. Shen and Y.M. Yang, “A hybrid PVDF-HFP/nanoparticle gelelectrolyte for dye-sensitized solar cellapplications”, Nanotechnology, 19, 455201(2008).
[76] P. Wang, S. M. Zakeeruddin, M. Gr□tzel, “Solidifying liquid electrolytes with fluorine polymer and silica nanoparticles for quasi-solid dye-sensitized solar cells”, Journal of Fluorine Chemistry, 125, 124-1245 (2004).
[77] H. Usui, H. Matsui, N. Tanabe, S. Yanagida, “Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes”, Journal of Photochemistry and Photobiology A: Chemistry, 164, 97-101 (2004).
[78] S. Yanagida, M. Watanabe, H. Matsui, K. Okada, H. Usui, T. Ezure and N. Tanabe “Dye-sensitized Solar Cells Using Nanocomposite Ion-gel”, Fujikura Technical Review (2005).
[79] T. Kato, T. Kado, S. Tanaka, A. Okazaki, and S. Hayase, “Quasi-Solid Dye-Sensitized Solar Cells Containing Nanoparticles Modified with Ionic Liquid-Type Molecules”, Journal of the electrochemical society, 153, 3, 626-630 (2006).
[80] S. Cerneaux, S. M. Zakeeruddin, J. M. Pringle, Y.B. Cheng, M.Gr□tzel and L. Spiccia, “Novel Nano-Structured Silica-Based Electrolytes Containing Quaternary Ammonium Iodide Moieties”, Adv. Funct. Mater., 17, 3200-3206 (2007).
[81] K.M. Lee, P.Y. Chen, C.P. Lee, K.C. Ho, “Binary room-temperature ionic liquids based electrolytes solidified with SiO2 nanoparticles for dye-sensitized solar cells” , Journal of Power Sources, 190, 573-577 (2009).
[82] M. L. Rosenbluth and N. S. Lewis, “Ideal Behavior of the Open Circuit Voltage of Semiconductor/Liquid Junctions”, J. Phys. Chem., 93, 3735-3740 (1989).
[83] R. Kawano and M. Watanabe, “Equilibrium potentials and charge transport of an I-/I3- redox couple in an ionic liquid, Chem. Commun., 330-331 (2003).
[84] H. Ohno, M. Yoshizawa, “Ion conductive characteristics of ionic liquids prepared by neutralization of alkylimidazoles”, Solid State Ionics, 154, 303-309 (2002).
[85] M.Gr□tzel, “A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol-Gel Nanocomposite Electrolyte Containing Ionic Liquid”, Chem. Mater., 15, 1825 (2003).
[86] M.Gr□tzel, “A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells”, J. Phys. Chem. B, 107, 48, 13280-13285 (2003).
[87] Hongwei Han, Wei Liu, Zing Zhang, and Xing-Zhong Zhao, Adv.Funct.Mater.,15, 1940 (2005).
[88] S. Ito, T. N. Murakami , P. Comte , P. Liska ,C. Gr□tzel ,M.K. Nazeeruddin , M. Gr□tzel, “Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%”, Thin Solid Films, 516, 4613-4619 (2008).
[89] B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, “Review of recent progress in solid-state dye-sensitized solar cells”, Solar Energy Materials & Solar Cells, 90, 549-573 (2006).
[90] C.H. Lee, W.H. Chiu, K.M. Lee, W.H. Yen, H.F. Lin, W.F. Hsieh, J.M. Wu, “The influence of tetrapod-like ZnO morphology and electrolytes on energy conversion efficiency of dye-sensitized solar cells”, Electrochimica Acta, 55, 8422-8429 (2010).
[91] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Arakawa, “Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells”, Solar Energy Materials & Solar Cells, 70, 151-161 (2001)
[92] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura,Y. Wada, and S. Yanagida, “Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1) : The Case of Solar Cells Using the I-/I3- Redox Couple”, J. Phys. Chem. B, 109, 3480-3487 (2005).
[93] S. Kambe, S. Nakade, T. Kitamura, Y. Wada, and S. Yanagida, “Influence of the Electrolytes on Electron Transport in Mesoporous TiO2-Electrolyte Systems”, J. Phys. Chem. B, 106, 2967-2972 (2002).
[94] J.E. Benedetti, M.A. de Paoli and A.F. Nogueira, “Enhancement of photocurrent generation and open circuit voltage in dye-sensitized solar cells using Li+ trapping species in the gel electrolyte”, Chem. Commun., 1121-1123 (2008).
[95] S. E. Koops, B. C. O’Regan, P. R. F. Barnes, and J. R. Durrant, “Parameters Influencing the Efficiency of Electron Injection in
Dye-Sensitized Solar Cells”, J. AM. CHEM. SOC., 9, 131, 13 (2009).
[96] J. Wu, Z. Lan, S. Hao, P. Li, J. Lin,M. Huang, L. Fang, and Y. Huang, “Progress on the electrolytes for dye-sensitized solar cells”, Pure and Applied Chemistry, 80, 2241-2258 (2008).
[97] V. Suryanarayanan, K.M. Lee, J.G. Chen and K.C. Ho, “High performance dye-sensitized solar cells containing 1-methyl-3-propyl imidazolinium iodide-effect of additives and solvents”, Journal of Electroanalytical Chemistry, 633, 146-152 (2009).
[98] M. Zistler, P. Wachter, P. Wasserscheid, D. Gerhard,
A. Hinsch , R. Sastrawan, H.J. Gores, “Comparison of electrochemical methods for triiodide diffusion coefficient measurements and observation of non-Stokesian diffusion behaviour in binary mixtures of two ionic liquids”, Electrochimica Acta, 52, 161-169 (2006).