簡易檢索 / 詳目顯示

研究生: 李泓燁
Lee, Hung-Yeh
論文名稱: 色彩約束生成樹問題:易解的情況
Colored-Constrained Spanning Tree Problems: The Tractable Cases
指導教授: 韓永楷
Hon, Wing-Kai
口試委員: 蔡孟宗
Tsai, Meng-Tsung
王弘倫
Wang, Hung-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 19
中文關鍵詞: 邊著色圖生成樹色彩約束最大流擬陣
外文關鍵詞: edge-colored graphs, spanning tree, colored constrained, maximum flow, matroid
相關次數: 點閱:190下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「色彩約束生成樹問題」或「出度色彩約束生成樹問題」旨在邊著色圖上找到一個生成樹,使得和每一個節點相鄰的邊(或出邊)中,顏色相同的邊數少於一個給定的常數。我們探討此問題中存在多項式時間複雜度演算法的特例。其中,當給定邊著色圖為有向無環圖時,出度色彩約束生成樹問題可由網路最大流或是擬陣相關算法解開。除此之外,參數為1的色彩約束生成樹問題在只有兩種顏色的邊著色圖上可以透過動態規劃在線性時間內解開。


    The κ-Colored Constrained Spanning Tree (κ-CCST) and the κ-Colored Out-Constrained Spanning Tree (κ-COCST) problems on edge-colored directed graphs target to find a spanning tree such that for each vertex, the number of incident edges (or, outgoing edges) that share any specific color is bounded by some constant κ. We discussed special cases where polynomial-time algorithms exist. In particular, when the input graph is a directed acyclic graph (DAG), the κ-COCST problem can be solved via a maximum-flow-based algorithm or a matroid-based algorithm. Furthermore, the 1-CCST problem can be solved via dynamic programming in linear time in 2-edge-colored graphs.

    摘要 ... i Abstract ... ii Acknowledgment ... iii Contents ... iv 1 Introduction ... 1 1.1 Definitions ... 3 1.2 Thesis Organization ... 4 2 Finding a 1-CCST on 2-Edge-Colored DAGs in Linear Time ... 5 3 Finding COCST on Edge-Colored DAGs ... 10 3.1 Solution based on Maximum Flow ... 10 3.2 Solution based on Matroid Intersection ... 14 4 Conclusion ... 17

    [1] Jarno Alanko, Giovanna D’Agostino, Alberto Policriti, and Nicola Prezza. Regular
    Languages Meet Prefix Sorting. In ACM-SIAM Symposium on Discrete Algorithms
    (SODA), pages 911–930, 2020.
    [2] V. Borozan, W. Fernandez de La Vega, Y. Manoussakis, C. Martinhon, R. Muthu,
    H.P. Pham, and R. Saad. Maximum Colored Trees in Edge-Colored Graphs. European
    Journal of Combinatorics, 80:296–310, 2019.
    [3] Yangyang Cheng, Mikio Kano, and Guanghui Wang. Properly Colored Spanning
    Trees in Edge-Colored Graphs. Discrete Mathematics, 343(1):111629, 2020.
    [4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
    Introduction to Algorithms, 3rd Edition. MIT Press, 2009.
    [5] Marek Cygan. Parameterized Algorithms. Springer, 2015.
    [6] Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler Graphs: A Framework
    for BWT-based Data Structures. Theoretical Computer Science, 698:67–78, 2017.
    [7] Yu Gao, Yang P. Liu, and Richard Peng. Fully Dynamic Electrical Flows: Sparse
    Maxflow Faster Than Goldberg-Rao. In 2021 IEEE 62nd Annual Symposium on
    Foundations of Computer Science (FOCS), pages 516–527, 2022.
    [8] Mikio Kano and Xueliang Li. Monochromatic and Heterochromatic Subgraphs in
    Edge-Colored Graphs - A Survey. Graphs and Combinatorics, 24, 09 2008.
    [9] Mikio Kano, Shunichi Maezawa, Katsuhiro Ota, Masao Tsugaki, and Takamasa
    Yashima. Color Degree Sum Conditions for Properly Colored Spanning Trees in
    Edge-Colored Graphs. Discrete Mathematics, 343(11):112042, 2020.
    [10] Mikio Kano and Masao Tsugaki. Rainbow and Properly Colored Spanning Trees in
    Edge-Colored Bipartite Graphs. Graphs and Combinatorics, 37(5):1913–1921, 2021.
    [11] Hung-Yeh Lee, Hsuan-Yu Liao, and Wing-Kai Hon. Colored Constrained Spanning
    Tree on Directed Graphs. In Algorithms and Data Structures (WADS), volume 14079,
    pages 561–573, 2023.
    [12] James Oxley. Matroid Theory. Oxford University Press, 2011.
    [13] J. van den Brand, Y. Lee, D. Nanongkai, R. Peng, T. Saranurak, A. Sidford, Z. Song,
    and D. Wang.
    Bipartite Matching in Nearly-linear Time on Moderately Dense
    Graphs. In IEEE Symposium on Foundations of Computer Science (FOCS), pages
    919–930, 2020.

    QR CODE