簡易檢索 / 詳目顯示

研究生: 邱上桓
Chiu, Shang-Huan
論文名稱: Electromechanical System: Formulation and Stability
機電系統:形式化及穩定性
指導教授: 陳樹杰
Chern, Shuh-Jye
口試委員: 陳建隆
陳國璋
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 47
中文關鍵詞: 機電系統形式化平衡態之穩定性
外文關鍵詞: Electromechanical System, LaSalle's principle, inertia theorem, energy-Casimir method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要的目的是描述機電系統的三種數學表示式,並利用三種方法來分析以這些表示式來描述之機電系統平衡態的穩定性。之後再提供一些例子說明這些表示式和方法實際運用的情況。


    Inthisthesis,threeformulationsoftheelectromechanicalsystemsareintroduced.Meth-odsofstabilityanalysissuchasLaSalle'sprinciple,linearizationandenergy-Casimirmethodareemployedinstudyingsomeexamplesofelectriccircuitsandmotors.

    1 Introduction 2 Formulations 2.1 From Maxwell's equations to Kirchhoff 's equations 2.2 Lagrange-Maxwell equations 2.3 Canonical Hamiltonian formulations 2.4 Port-Hamiltonian formulation 3 Some Methods of Stability Analysis 18 3.1 LaSalle's invariance principle 3.2 Linearization method 3.3 Energy-Casimir method 4 Application to Synchronous Machines 5 Conclusions References

    [1] V. I. Arnold, Mathematical Methods of Classical Mechanics , Springer Verlag, New York, second
    edition, 1989.
    [2] S. J. Chern, Stability theory for linear dissipative Hamiltonian systems, Linear Algebra Appl.
    357, 143-162, 2002.
    [3] J. k. Hale, Ordinary Di erential Equations, John Wiley and Sons, New York, 1969.
    [4] S.B. Hsu, Ordinary Di erential Equations with Applications, Vol.16. Series on Applied Mathematics,
    world scienti c, New Jersey, 2006.
    [5] S. E. Lyshevski, Nano- and Micro- Electromechanical Systems: Fundamentals of nano- and
    microengineering , CPC Press, Florida, second edition, 2005.
    [6] B. M. J. Maschke, R. Ortega, A. J. van der Schaft, Energy-Based Lyapunov Functions for Forced
    Hamiltonian Systems with Dissopation, IEEE Trans. Aut. Contr., Vol. 45, NO. 8, 1498-1502,
    2000.
    [7] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer Verlag,
    New York, second edition, 1999.
    [8] J. I. Nemark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Vol. 33. Translations of
    Mathematical Monograph, AMS, Providence, RI, 1972.
    [9] A. J. van der Schaft, Port-Hamiltonian Systems: network modeling and control of nonlinear
    physical systems, H. Irschik and K. Schlacher, Editors, Advanced Dynamics and Control of
    Structures and Machines, Springer, New York, 127-168, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE