簡易檢索 / 詳目顯示

研究生: 江柏毅
Chiang, Po-Yi
論文名稱: 具可變式配體之環境敏感螢光探針對蛋白質及磺胺類藥物之選擇性檢測
Environment-sensitive Fluorescent Probes with Variable Ligands for Selective Detection of Proteins and Sulfonamide Drugs.
指導教授: 陳貴通
Tan, Kui-Thong
口試委員: 林俊成
陳貴通
林伯樵
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 145
中文關鍵詞: 蛋白質偵測磺胺藥物偵測環境敏感螢光分子螢光探針
外文關鍵詞: protein detection, sulfonamide drug, environment-sensitive fluorophore, fluorescent probe
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小分子型蛋白質螢光探針近年來逐漸受到重視,其具有快速偵測、具專一性、高靈敏度、優化簡易、高信號雜訊比等優點,目前有許多小分子型螢光探針之發表,但其多為酶活性型探針,主要利用蛋白質本身之催化活性,進而達到其偵測目的,如醣苷酶(glycosidases)、蛋白酶(proteases)等酶活性蛋白質,但此手法若要偵測非酶活性蛋白質將受重重限制。
    在此我們以環境敏感螢光分子與對蛋白質之親和性配體結合,並形成一對目標蛋白質具專一性偵測之螢光探針,利用蛋白質結合域之疏水性環境與外部環境之差異,使環境敏感螢光分子產生劇烈之螢光變化。在此,我們成功建立一套SBD型螢光探針模型,並成功應用於人類碳酸酐酶(hCAII)、胰蛋白酶(trypsin)及抗生物素蛋白(avidin)之專一性檢測,其螢光增益最高達17倍,並延伸應用於細胞膜上hCAII表達之成像及可調節親和性配體於數種磺胺藥物偵測。此外我們延伸SBD型探針之成功概念,以Cy5 rotor螢光分子作其概念延伸,雖其選擇性仍有待改良,但其嶄新之偵測模式及螢光分子本身之特性,仍值得我們深入研究及探討。


    In recent years, small molecule fluorescent turn-on probes are getting attention as they allow for sensitive, simple, and specific detection with high signal-to-background ratios. Currently most of the small-molecule fluorescent turn-on probes are designed for monitoring enzyme activities, for example, glycosidases, proteases. Typically, their fluorescence turn-on mechanism is based on an enzymatic reaction with the chemical probes to convert a non-fluorescent substrate into a fluorescent product. On the other hand, the design of fluorescence probes for non-enzymatic proteins remains a challenging task.
    Herein, we introduce a new type of fluorescent turn-on probes, where a small molecule ligand is conjugated to an environment-sensitive fluorophore, for the selective detection of both enzymes and non-enzymatic proteins. The fluorescent turn-on mechanism is based on the binding of the ligand to a hydrophobic ligand binding domain of the target protein whereby the close proximity to the hydrophobic environment can influence the environment-sensitive fluorophore to exhibit stronger fluorescence. We successfully established a SBD type model for specific detection of hCAII, trypsin and avidin with fluorescent turn-on ratios of up to 17-fold. We also demonstrated that these fluorescent probes can be employed to visualize carbonic anhydrase expressed on the cell surface, and applied on several sulfa drugs detection by tunable ligand affinity. Furthermore, we also extended our protein detection strategy, in Cy5 rotor model, the proteins selectivity remain to be improved, but the novel design and characteristics of our detection method is worth to be developed by adapting fluorescent molecular rotor based on Cy5.

    摘要 i Abstract ii 謝誌 iii 著作列表 iv 目錄 v 第一章 緒論 1 §1-1 蛋白質(Protein) 1 §1-1.1酶與非酶蛋白質(Enzyme and Non-enzymatic Protein) 1 §1-2 代謝物(Metabolites) 4 §1-2.1 一般代謝物 4 §1-2.2 一級磺胺類藥物(Primary Sulfonamide Drugs) 6 §1-3對環境敏感之螢光分子(Environment-sensitive Fluorophores) 7 §1-4 實驗動機及目的 11 第二章 文獻回顧 12 §2-1 近代選擇性蛋白探針方法 12 §2-1.1 小分子型酶活性螢光探針(Small-molecule-based Enzyme Activity Fluorescent Probes) 12 §2-1.2螢光共軛高分子型酶活性探針( Fluorescent-conjugated-polymer-based Enzyme Activity probes) 15 §2-1.3 信標式螢光蛋白質探針(Beacons-based Fluorescent Protein Probes) 16 §2-1.4 量子點式蛋白質探針(Quantum Dot-Based Protein probes) 17 §2-1.5金奈米粒子式蛋白質(Gold Nanoparticle-based Protein Probes, AuNPs) 18 §2-1.6 螢光蛋白式蛋白質探針(Fluorescent Protein-based Probes) 20 §2-1.7自組裝式蛋白質螢光探針(Self-assembling Fluorescent Probes) 21 §2-2 設計之限制 23 第三章 蛋白質探針之設計構想 25 §3-1 設計構想 25 §3-1.1 SBD型蛋白質探針之設計構想 26 §3-1.2 Cy5 rotor型蛋白質探針之設計構想 26 第四章 實驗結果及討論 28 §4-1 SBD型選擇性蛋白質探針及磺胺藥物檢測 28 §4-1.1 以人類碳酸酐酶II建立SBD型探針模型 30 §4-1.2 模型延伸於胰蛋白酶及抗生物素蛋白檢測 46 §4-1.3 細胞影像應用 58 §4-1.4 一級磺胺藥物檢測 61 §4-2 Cy5 rotor型蛋白質探針 67 §4-2.1 以人類碳酸酐酶II建立Cy5 rotor型探針 68 第五章 實驗結論 77 第六章 實驗部分 79 §6-1 一般實驗方法 79 §6-2 有機合成及光譜資料 80 參考文獻 102 附錄 108

    1. Adams, J. A. Chem. Rev. 2001, 101, 2271-2290.
    2. Radzicka. A.; Wolfenden, R. Science 1995, 267, 90.
    3. (a) Murakami, T.; Ishiguro, N.; Higuchi, K. Veterinary Pathology. 2014, 51 363–371.
    (b) Fowler, D. M.; Koulov, A. V.; Balch, W. E.; Kelly, J. W. Trends Biochem. Sci. 2007, 32, 217-224.
    (c) Maury, C. P. J. Intern. Med. 2009, 265, 329-334.
    4. (a) Miller, Y.; Buyong, Ma; Nussinov, R. Chem. Rev. 2010, 110, 4820–4838.
    (b) Lundvig, D.; Lindersson, E.; Jensen, P. H. Mol. Brain Res. 2005, 134, 3−17.
    5. (a) Ramasamy, I.; Law, M.; Collins, S.; Brook, F. The Lancet Infectious Diseases. 2003, 3, 214-222.
    (b) Kimberlin, R.H.; Wilesmith, J.W. Ann. N.Y. Acad. Sci. 1994, 724, 210–220.
    6. Stuart, M. J.; Nagel, R. L. The Lancet 2004, 364, 1343–1360.
    7. Mitchell, J. D.; Borasio G. D. The Lancet 2007, 369, 2031-2041.
    8. Rinaldo, P.; Matern, D.; Bennett, M. J. Annu. Rev. Physiol. 2002, 64, 477-502.
    9. Tisch, R.; McDevitt, H. Cell 1996, 85, 291-297
    10. (a) Frank, J. E. Am. Fam. Physician. 2005, 72, 1277.
    (b) Raupp, P.; Hassan, J. A.; Varughese, M.;Kristiansson, B. Arch. Dis. Child. 2001, 85, 411-412.
    11. Coelho, T.; Maia, L. F.; Silva, A. M. da.; Cruz, M. W.; Plante-Bordeneuve V.; Suhr , O. B.; Conceicao, I.; Schmidt , H. H.; Trigo, P.; Kelly, J. W.; Labaudiniere, R.; Chan, J.; Packman, J.; Grogan, D. R. J. Neurol. 2013, 260, 2802-2814.
    12. Dixon, S. C.; Knopf, K. B.; Figg, W. D. Pharmacol. Rev. 2001, 53, 73-92.
    13. Dimroth, P.; Christoph von Ballmoos, T. M. EMBO. reports. 2006. 7, 276-282.
    14. (a) Dodgson, S. J.; Forster, R. E. Arch. Biochem. Biophys. 1986, 251, 198-204.
    (b) Lynch, C. J.; Fox, H.; Hazen, S. A.; Stanley, B. A; Dodgson, S.; Lanoue, K.F. Biochem. J. 1995, 310, 197-202.
    (c) Dodgson, S. J. J. Appl. Physiol. 1987, 63, 2134-2141.
    15. Tobal, J. M.; Balieiro, M. E. J. Med. Microbiol. 2014, 63, 15-27.
    16. (a) Maren, T. H. Physiol. Rev. 1967, 47, 595–781.
    (b) Maren, T. H. Annu. Rev. Pharmacol. Toxicol. 1976, 16, 309–327.
    17. Supuran, C. T. Nat. Rev. Drug. Discov. 2008, 7, 168-181.
    18. Gadde, K.M.; Franciscy, D.M.; Wagner 2nd, H. R.; Krishnan, K. R. JAMA. 2003, 289, 1820-1825.
    19. Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N. H.; Nagasu, T.; Koyanagi, N.; Kitoh, K. J. Med. Chem. 1999, 42, 3789-3799.
    20. Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J. S. Chem. Soc. Rev. 2014. 43, 4563-4601
    21. Rettig, W. Appl. Phys. B. 1988, 45, 145-149.
    22. Drummen, G. Molecules 2012, 17, 14067-14090.
    23. (a) Sutharsan, J.; Lichlyter, D.; Wright, N. E.; Dakanali, M.; Haidekker M. A.; Theodorakis, E. A. Tetrahedron 2010, 66, 2582-2588.
    (b) Rumble, C.; Rich, K.; He, G.; Maroncelli, M. J. Phys. Chem. A. 2012, 116, 10786-10792.
    24. (a) Alamiry, M. A. H.; Benniston, A. C.; Copley, G.; Elliott, K. J.; Harriman, A.; Stewart, B.; Zhi, Y.-G. Chem. Mater. 2008, 20, 4024–4032
    (b) Levitt, J. A.; Kuimova, M. K.; Yahioglu, G.; Chung, P.-H.; Suhling, K. ; Phillips, D. J. Phys. Chem. C. 2009, 113, 11634–11642
    25. Wandelt, B.; Cywinski, P.; Darling, G. D.; Stranix, B. R. Bioprobes and Bioelectronics 2005, 20, 1728-1736.
    26. Gatzogiannis, E.; Chen, Z.; Wei, L.; Wombacher, R.; Kao, Y. T.; Yefremov, G.; Cornish, V. W.; Min, W. Chem. Commun . 2012, 48, 8694–8696.
    27. Wang, L.; Xiao, Y.; Tian, W.; Deng, L. J. Am. Chem. Soc. 2013, 135, 2903−2906.
    28. Yang, Z.; He, Y.; Lee, J.-H.; Park, N.; Suh, M.; Chae, W. S.; Cao, J.; Peng, X.; Jung, H.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2013, 135, 9181−9185.
    29. Loving, G. S.; Sainlos, M.; Imperiali, B. Trends Biotechnol. 2010, 28, 73-83
    30. Nagy, K.; Göktürk, S.; Biczók, L. J. Phys. Chem. A. 2003, 107, 8784-8790.
    31. Va´zquez , M. E.; Blanco, J. B.; Imperiali, B. J. Am. Chem. Soc. 2005, 127, 1300-1306.
    32. Loving , G., Imperiali, B. J. Am. Chem. Soc. 2008, 130, 13630–13638
    33. (a) Huang, C.; Yin, Q.; Zhu, W.; Yang, Y.; Wang, X.; Qian, X.; Xu, Y. Angew. Chem. Int. Ed. 2011, 50, 7551-7556
    (b) Mizusawa, K.; Takaoka, Y.; Hamachi , I. J. Am. Chem. Soc. 2012, 134, 13386-13395.
    (c) Hori, Y.; Norinobu , T.; Sato, M.; Arita, K.; Shirakawa, M.; Kikuchi, K. J. Am. Chem. Soc. 2013, 135, 12360-12365.
    34. Venkatraman, P.; Nguyen, T. T.; Sainlos, M.; Bilsel, O.; Chitta, S.; Imperiali, B.; Stern, L. J. Nat. Chem. Biol. 2007, 3, 222-228.
    35. Kim, H. M.; Jung, C.; Kim, B. R.; Jung, S. Y.; Hong, J. H.; Ko, Y. G.; Lee, K. J.; Cho, B. R. Angew. Chem. Int. Ed. 2007, 46, 3460-3463.
    36. Sakabe, M.; Asanuma, D.; Kamiya, M.; Iwatate, R. J.; Hanaoka, K.; Terai, T.; Nagano, T.; Urano, Y. J. Am. Chem. Soc. 2013, 135, 409-414.
    37. Lee, M. H.; Han, J. H.; Lee, J. H.; Choi, H. G.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2012, 134, 17314-17319.
    38. Robinson, K. M.; Janes, M. S.; Pehar, M.; Monette, J. S.; Ross, M. F.; Hagen, T. M.; Murphy, M. P.; Beckman, J. S. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15038-15043.
    39. Kumaraswamy, S.; Bergstedt, T.; Shi, X.; Rininsland, F.; Kushon, S.; Xia, W.; Ley, K.; Achyuthan, K.; McBranch, D.; Whitten, D. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 7511-7515.
    40. (a) Lu, L.; Jones, R. M.; McBranch, D.; Whitten, D. Langmuir 2002, 18, 7706-7713.
    (b) Wu, C.; Peng, H.; Jiang, Y.; McNeill, J. J. Phys. Chem. B. 2006, 110, 14148-14154.
    41. Thurley, S.; Röglin, L.; Seitz, O. J. Am. Chem. Soc. 2007, 129, 12693-12695.
    42. Boeneman, K.; Mei, B. C.; Dennis, A. M.; Bao, G.; Deschamps, J. R.; Mattoussi, H.; Medintz, I. L. J. Am. Chem. Soc. 2009, 131, 3828–3829.
    43. De, M.; Ghosh, P. S.; Rotello, V. M. Advanced Materials 2008, 20, 4225-4241.
    44. Su, K. H.; Wei, Q. H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Nano Lett. 2003, 3, 1087-1090.
    45. Laromaine, A.; Koh, L.; Murugesan, M.; Ulijn, R. V.; Stevens, M. M. J. Am. Chem. Soc. 2007, 129, 4156-4157.
    46. Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem. Int. Ed. 2006, 45, 4562-4589.
    47. Mahajan, N. P.; Harrison-Shostak, D. C.; Michaux, J.; Herman , B. Chem. Biol. 1999, 6, 401-409.
    48. Harvey, C. D.; Ehrhardt, A. G.; Cellurale, C.; Zhong, H.; Yasuda, R.; Davis, R. J.; Svoboda, K. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 19264-19269.
    49. Bardwell, L. Biochem Soc Trans. 2006, 34, 837-841.
    50. (a) Yasuda, R.; Harvey, C. D.; Zhong, H.; Sobczyk, A.; Aelst, L. V.; Svoboda , K. Nat. Neurosci. 2006, 9, 283-291.
    (b) Peter, M.; Ameer-Beg, S. M.; Hughes, M. K.; Keppler, M. D.; Prag, S.; Marsh, M.; Vojnovic, B.; Ng, T. Biophys. J. 2005, 88, 1224-1237.
    51. Ogawa, M.; Kosaka, N.; Choyke, P. L.; Kobayashi, H. ACS Chem. Biol. 2009, 4, 535-546.
    52. Mizusawa, K.; Ishida, Y.; Takaoka, Y.; Masayoshi; Miyagawa, S. T.; Hamachi, I. J. Am. Chem. Soc. 2010, 132, 7291–7293.
    53. Mizusawa, K.; Takaoka, Y.; Hamachi, I. J. Am. Chem. Soc. 2012, 134, 13386-13395.
    54. Peng, X.; Yang, Z.; Wang, J.; Fan, J.; He, Y.; Song, F.; Wang, B.; Sun, S.; Qu, J.; Qi, J.; Yan, M. J. Am. Chem. Soc. 2011, 133, 6626-6635.
    55. Rimpelová, S.; Bříza, T.; Králová, J.; Záruba, K.; Kejík, Z.; Císařová, I.; Martásek, P.; Ruml, T.; Král, V. Bioconjugate Chem. 2013, 24, 1445−1454.
    56. (a) Su, G.; Liu, Z.; Xie, Z.; Qian, F.; He, W.; Guo, Z. Dalton Trans. 2009, 38, 7888-7890.
    57. (a) Toyooka, T.; Imai, K., Anal. Chem. 1984, 56, 2461-2464.
    (b) Uchiyama, S.; Santa, T.; Imai, K. J. Chem. Soc. Perkin Trans. 1999, 2, 2525 -2532.
    58. Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.; Gudiksen, K. L.; Weibel, D. B.; Whitesides, G. M. Chem. Rev. 2008, 108, 946-1051.
    59. (a) 施柏銘,國立清華大學碩士論文,2012。
    (b) 莊鈺德,國立清華大學碩士論文,2013。
    60. Klonis, N.; Sawyer, W. H. Photochem. Photobiol. 2000, 72, 179-185.
    61. Min, J.; Lee, J. W.; Ahn, Y.-H.; Chang, Y.-T. J. Comb. Chem. 2007, 9, 1079–1083.
    62. (a) Zhao, K.; Liu, T.; Wang, G.; Chang, X.; Xue, D.; Belfield, K. D.; Fang, Y. J. Phys. Chem. B. 2013, 117, 5659-5667.
    (b) Arkar, S.; Roy, S.; Sikdar, A.; Saha, R. N.; Panja, S. S. Analyst 2013, 138, 7119-7126.
    63. Fujita, T. J. Med. Chem., 1972, 15, 1049-1056.
    64. Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5076-5080.
    65. Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M.; Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P. L.; Kobayashi, H. Nat. Med. 2009, 15, 104-109.
    66. Robertson, N.; Potter, C.; Harris, A. L. Cancer Res. 2004, 64, 6160-6165.
    67. Taylor, J.; Picelli, G.; Harrison, D. J. Electrophoresis 2001, 22, 3699–3708.
    68. Lozan, V.; Solntsev, P. Y.; Leibeling, G.; Domasevitch, K. V.; Kersting, B. Eur. J. Inorg. Chem. 2007, 20, 321-3226
    69. Murov, S. Organic Chemistry Directory, 3rd ed. 2003.
    70. Lide, D.R. CRC Handbook of Chemistry and Physics, 85th Edition. 2004.
    71. Kiyose, K.; Hanaoka, K.; Oushiki, D.; Nakamura, T.; Kajimura, M.; Suematsu, M.; Nishimatsu, H.; Yamane, T.; Terai, T.; Hirata, Y; Nagano, T. J. Am. Chem. Soc. 2010, 132, 15846-15848.
    72. Gerowska, M.; Hall, L.; Richardson, J.; Shelbourne, M.; Brown, T. Tetrahedron 2012, 68, 857-864.
    73. Vickers, T. 2006. From http://commons.wikimedia.org/wiki/File:Induced_fit_ diagram.svg.
    74. Cummings, B. Microbiology, 8th ed. 2004.
    75. (a) Zhou, F.; Shao, J.; Yang, Y.; Zhao, J.; Guo, H.; Li, X.; Ji, S.; Zhang, Z. Eur. J. Org. Chem. 2011, 25, 4773-4787.
    (b) Allen, B. D.; Benniston, A. C.; Harriman, A.; Rostron, S. A.; Yu, C. Phys. Chem. Chem. Phys. 2005, 7, 3035-3040.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE