研究生: |
江柏毅 Chiang, Po-Yi |
---|---|
論文名稱: |
具可變式配體之環境敏感螢光探針對蛋白質及磺胺類藥物之選擇性檢測 Environment-sensitive Fluorescent Probes with Variable Ligands for Selective Detection of Proteins and Sulfonamide Drugs. |
指導教授: |
陳貴通
Tan, Kui-Thong |
口試委員: |
林俊成
陳貴通 林伯樵 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 145 |
中文關鍵詞: | 蛋白質偵測 、磺胺藥物偵測 、環境敏感螢光分子 、螢光探針 |
外文關鍵詞: | protein detection, sulfonamide drug, environment-sensitive fluorophore, fluorescent probe |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小分子型蛋白質螢光探針近年來逐漸受到重視,其具有快速偵測、具專一性、高靈敏度、優化簡易、高信號雜訊比等優點,目前有許多小分子型螢光探針之發表,但其多為酶活性型探針,主要利用蛋白質本身之催化活性,進而達到其偵測目的,如醣苷酶(glycosidases)、蛋白酶(proteases)等酶活性蛋白質,但此手法若要偵測非酶活性蛋白質將受重重限制。
在此我們以環境敏感螢光分子與對蛋白質之親和性配體結合,並形成一對目標蛋白質具專一性偵測之螢光探針,利用蛋白質結合域之疏水性環境與外部環境之差異,使環境敏感螢光分子產生劇烈之螢光變化。在此,我們成功建立一套SBD型螢光探針模型,並成功應用於人類碳酸酐酶(hCAII)、胰蛋白酶(trypsin)及抗生物素蛋白(avidin)之專一性檢測,其螢光增益最高達17倍,並延伸應用於細胞膜上hCAII表達之成像及可調節親和性配體於數種磺胺藥物偵測。此外我們延伸SBD型探針之成功概念,以Cy5 rotor螢光分子作其概念延伸,雖其選擇性仍有待改良,但其嶄新之偵測模式及螢光分子本身之特性,仍值得我們深入研究及探討。
In recent years, small molecule fluorescent turn-on probes are getting attention as they allow for sensitive, simple, and specific detection with high signal-to-background ratios. Currently most of the small-molecule fluorescent turn-on probes are designed for monitoring enzyme activities, for example, glycosidases, proteases. Typically, their fluorescence turn-on mechanism is based on an enzymatic reaction with the chemical probes to convert a non-fluorescent substrate into a fluorescent product. On the other hand, the design of fluorescence probes for non-enzymatic proteins remains a challenging task.
Herein, we introduce a new type of fluorescent turn-on probes, where a small molecule ligand is conjugated to an environment-sensitive fluorophore, for the selective detection of both enzymes and non-enzymatic proteins. The fluorescent turn-on mechanism is based on the binding of the ligand to a hydrophobic ligand binding domain of the target protein whereby the close proximity to the hydrophobic environment can influence the environment-sensitive fluorophore to exhibit stronger fluorescence. We successfully established a SBD type model for specific detection of hCAII, trypsin and avidin with fluorescent turn-on ratios of up to 17-fold. We also demonstrated that these fluorescent probes can be employed to visualize carbonic anhydrase expressed on the cell surface, and applied on several sulfa drugs detection by tunable ligand affinity. Furthermore, we also extended our protein detection strategy, in Cy5 rotor model, the proteins selectivity remain to be improved, but the novel design and characteristics of our detection method is worth to be developed by adapting fluorescent molecular rotor based on Cy5.
1. Adams, J. A. Chem. Rev. 2001, 101, 2271-2290.
2. Radzicka. A.; Wolfenden, R. Science 1995, 267, 90.
3. (a) Murakami, T.; Ishiguro, N.; Higuchi, K. Veterinary Pathology. 2014, 51 363–371.
(b) Fowler, D. M.; Koulov, A. V.; Balch, W. E.; Kelly, J. W. Trends Biochem. Sci. 2007, 32, 217-224.
(c) Maury, C. P. J. Intern. Med. 2009, 265, 329-334.
4. (a) Miller, Y.; Buyong, Ma; Nussinov, R. Chem. Rev. 2010, 110, 4820–4838.
(b) Lundvig, D.; Lindersson, E.; Jensen, P. H. Mol. Brain Res. 2005, 134, 3−17.
5. (a) Ramasamy, I.; Law, M.; Collins, S.; Brook, F. The Lancet Infectious Diseases. 2003, 3, 214-222.
(b) Kimberlin, R.H.; Wilesmith, J.W. Ann. N.Y. Acad. Sci. 1994, 724, 210–220.
6. Stuart, M. J.; Nagel, R. L. The Lancet 2004, 364, 1343–1360.
7. Mitchell, J. D.; Borasio G. D. The Lancet 2007, 369, 2031-2041.
8. Rinaldo, P.; Matern, D.; Bennett, M. J. Annu. Rev. Physiol. 2002, 64, 477-502.
9. Tisch, R.; McDevitt, H. Cell 1996, 85, 291-297
10. (a) Frank, J. E. Am. Fam. Physician. 2005, 72, 1277.
(b) Raupp, P.; Hassan, J. A.; Varughese, M.;Kristiansson, B. Arch. Dis. Child. 2001, 85, 411-412.
11. Coelho, T.; Maia, L. F.; Silva, A. M. da.; Cruz, M. W.; Plante-Bordeneuve V.; Suhr , O. B.; Conceicao, I.; Schmidt , H. H.; Trigo, P.; Kelly, J. W.; Labaudiniere, R.; Chan, J.; Packman, J.; Grogan, D. R. J. Neurol. 2013, 260, 2802-2814.
12. Dixon, S. C.; Knopf, K. B.; Figg, W. D. Pharmacol. Rev. 2001, 53, 73-92.
13. Dimroth, P.; Christoph von Ballmoos, T. M. EMBO. reports. 2006. 7, 276-282.
14. (a) Dodgson, S. J.; Forster, R. E. Arch. Biochem. Biophys. 1986, 251, 198-204.
(b) Lynch, C. J.; Fox, H.; Hazen, S. A.; Stanley, B. A; Dodgson, S.; Lanoue, K.F. Biochem. J. 1995, 310, 197-202.
(c) Dodgson, S. J. J. Appl. Physiol. 1987, 63, 2134-2141.
15. Tobal, J. M.; Balieiro, M. E. J. Med. Microbiol. 2014, 63, 15-27.
16. (a) Maren, T. H. Physiol. Rev. 1967, 47, 595–781.
(b) Maren, T. H. Annu. Rev. Pharmacol. Toxicol. 1976, 16, 309–327.
17. Supuran, C. T. Nat. Rev. Drug. Discov. 2008, 7, 168-181.
18. Gadde, K.M.; Franciscy, D.M.; Wagner 2nd, H. R.; Krishnan, K. R. JAMA. 2003, 289, 1820-1825.
19. Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N. H.; Nagasu, T.; Koyanagi, N.; Kitoh, K. J. Med. Chem. 1999, 42, 3789-3799.
20. Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J. S. Chem. Soc. Rev. 2014. 43, 4563-4601
21. Rettig, W. Appl. Phys. B. 1988, 45, 145-149.
22. Drummen, G. Molecules 2012, 17, 14067-14090.
23. (a) Sutharsan, J.; Lichlyter, D.; Wright, N. E.; Dakanali, M.; Haidekker M. A.; Theodorakis, E. A. Tetrahedron 2010, 66, 2582-2588.
(b) Rumble, C.; Rich, K.; He, G.; Maroncelli, M. J. Phys. Chem. A. 2012, 116, 10786-10792.
24. (a) Alamiry, M. A. H.; Benniston, A. C.; Copley, G.; Elliott, K. J.; Harriman, A.; Stewart, B.; Zhi, Y.-G. Chem. Mater. 2008, 20, 4024–4032
(b) Levitt, J. A.; Kuimova, M. K.; Yahioglu, G.; Chung, P.-H.; Suhling, K. ; Phillips, D. J. Phys. Chem. C. 2009, 113, 11634–11642
25. Wandelt, B.; Cywinski, P.; Darling, G. D.; Stranix, B. R. Bioprobes and Bioelectronics 2005, 20, 1728-1736.
26. Gatzogiannis, E.; Chen, Z.; Wei, L.; Wombacher, R.; Kao, Y. T.; Yefremov, G.; Cornish, V. W.; Min, W. Chem. Commun . 2012, 48, 8694–8696.
27. Wang, L.; Xiao, Y.; Tian, W.; Deng, L. J. Am. Chem. Soc. 2013, 135, 2903−2906.
28. Yang, Z.; He, Y.; Lee, J.-H.; Park, N.; Suh, M.; Chae, W. S.; Cao, J.; Peng, X.; Jung, H.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2013, 135, 9181−9185.
29. Loving, G. S.; Sainlos, M.; Imperiali, B. Trends Biotechnol. 2010, 28, 73-83
30. Nagy, K.; Göktürk, S.; Biczók, L. J. Phys. Chem. A. 2003, 107, 8784-8790.
31. Va´zquez , M. E.; Blanco, J. B.; Imperiali, B. J. Am. Chem. Soc. 2005, 127, 1300-1306.
32. Loving , G., Imperiali, B. J. Am. Chem. Soc. 2008, 130, 13630–13638
33. (a) Huang, C.; Yin, Q.; Zhu, W.; Yang, Y.; Wang, X.; Qian, X.; Xu, Y. Angew. Chem. Int. Ed. 2011, 50, 7551-7556
(b) Mizusawa, K.; Takaoka, Y.; Hamachi , I. J. Am. Chem. Soc. 2012, 134, 13386-13395.
(c) Hori, Y.; Norinobu , T.; Sato, M.; Arita, K.; Shirakawa, M.; Kikuchi, K. J. Am. Chem. Soc. 2013, 135, 12360-12365.
34. Venkatraman, P.; Nguyen, T. T.; Sainlos, M.; Bilsel, O.; Chitta, S.; Imperiali, B.; Stern, L. J. Nat. Chem. Biol. 2007, 3, 222-228.
35. Kim, H. M.; Jung, C.; Kim, B. R.; Jung, S. Y.; Hong, J. H.; Ko, Y. G.; Lee, K. J.; Cho, B. R. Angew. Chem. Int. Ed. 2007, 46, 3460-3463.
36. Sakabe, M.; Asanuma, D.; Kamiya, M.; Iwatate, R. J.; Hanaoka, K.; Terai, T.; Nagano, T.; Urano, Y. J. Am. Chem. Soc. 2013, 135, 409-414.
37. Lee, M. H.; Han, J. H.; Lee, J. H.; Choi, H. G.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2012, 134, 17314-17319.
38. Robinson, K. M.; Janes, M. S.; Pehar, M.; Monette, J. S.; Ross, M. F.; Hagen, T. M.; Murphy, M. P.; Beckman, J. S. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15038-15043.
39. Kumaraswamy, S.; Bergstedt, T.; Shi, X.; Rininsland, F.; Kushon, S.; Xia, W.; Ley, K.; Achyuthan, K.; McBranch, D.; Whitten, D. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 7511-7515.
40. (a) Lu, L.; Jones, R. M.; McBranch, D.; Whitten, D. Langmuir 2002, 18, 7706-7713.
(b) Wu, C.; Peng, H.; Jiang, Y.; McNeill, J. J. Phys. Chem. B. 2006, 110, 14148-14154.
41. Thurley, S.; Röglin, L.; Seitz, O. J. Am. Chem. Soc. 2007, 129, 12693-12695.
42. Boeneman, K.; Mei, B. C.; Dennis, A. M.; Bao, G.; Deschamps, J. R.; Mattoussi, H.; Medintz, I. L. J. Am. Chem. Soc. 2009, 131, 3828–3829.
43. De, M.; Ghosh, P. S.; Rotello, V. M. Advanced Materials 2008, 20, 4225-4241.
44. Su, K. H.; Wei, Q. H.; Zhang, X.; Mock, J. J.; Smith, D. R.; Schultz, S. Nano Lett. 2003, 3, 1087-1090.
45. Laromaine, A.; Koh, L.; Murugesan, M.; Ulijn, R. V.; Stevens, M. M. J. Am. Chem. Soc. 2007, 129, 4156-4157.
46. Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem. Int. Ed. 2006, 45, 4562-4589.
47. Mahajan, N. P.; Harrison-Shostak, D. C.; Michaux, J.; Herman , B. Chem. Biol. 1999, 6, 401-409.
48. Harvey, C. D.; Ehrhardt, A. G.; Cellurale, C.; Zhong, H.; Yasuda, R.; Davis, R. J.; Svoboda, K. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 19264-19269.
49. Bardwell, L. Biochem Soc Trans. 2006, 34, 837-841.
50. (a) Yasuda, R.; Harvey, C. D.; Zhong, H.; Sobczyk, A.; Aelst, L. V.; Svoboda , K. Nat. Neurosci. 2006, 9, 283-291.
(b) Peter, M.; Ameer-Beg, S. M.; Hughes, M. K.; Keppler, M. D.; Prag, S.; Marsh, M.; Vojnovic, B.; Ng, T. Biophys. J. 2005, 88, 1224-1237.
51. Ogawa, M.; Kosaka, N.; Choyke, P. L.; Kobayashi, H. ACS Chem. Biol. 2009, 4, 535-546.
52. Mizusawa, K.; Ishida, Y.; Takaoka, Y.; Masayoshi; Miyagawa, S. T.; Hamachi, I. J. Am. Chem. Soc. 2010, 132, 7291–7293.
53. Mizusawa, K.; Takaoka, Y.; Hamachi, I. J. Am. Chem. Soc. 2012, 134, 13386-13395.
54. Peng, X.; Yang, Z.; Wang, J.; Fan, J.; He, Y.; Song, F.; Wang, B.; Sun, S.; Qu, J.; Qi, J.; Yan, M. J. Am. Chem. Soc. 2011, 133, 6626-6635.
55. Rimpelová, S.; Bříza, T.; Králová, J.; Záruba, K.; Kejík, Z.; Císařová, I.; Martásek, P.; Ruml, T.; Král, V. Bioconjugate Chem. 2013, 24, 1445−1454.
56. (a) Su, G.; Liu, Z.; Xie, Z.; Qian, F.; He, W.; Guo, Z. Dalton Trans. 2009, 38, 7888-7890.
57. (a) Toyooka, T.; Imai, K., Anal. Chem. 1984, 56, 2461-2464.
(b) Uchiyama, S.; Santa, T.; Imai, K. J. Chem. Soc. Perkin Trans. 1999, 2, 2525 -2532.
58. Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.; Gudiksen, K. L.; Weibel, D. B.; Whitesides, G. M. Chem. Rev. 2008, 108, 946-1051.
59. (a) 施柏銘,國立清華大學碩士論文,2012。
(b) 莊鈺德,國立清華大學碩士論文,2013。
60. Klonis, N.; Sawyer, W. H. Photochem. Photobiol. 2000, 72, 179-185.
61. Min, J.; Lee, J. W.; Ahn, Y.-H.; Chang, Y.-T. J. Comb. Chem. 2007, 9, 1079–1083.
62. (a) Zhao, K.; Liu, T.; Wang, G.; Chang, X.; Xue, D.; Belfield, K. D.; Fang, Y. J. Phys. Chem. B. 2013, 117, 5659-5667.
(b) Arkar, S.; Roy, S.; Sikdar, A.; Saha, R. N.; Panja, S. S. Analyst 2013, 138, 7119-7126.
63. Fujita, T. J. Med. Chem., 1972, 15, 1049-1056.
64. Livnah, O.; Bayer, E. A.; Wilchek, M.; Sussman, J. L. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 5076-5080.
65. Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M.; Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P. L.; Kobayashi, H. Nat. Med. 2009, 15, 104-109.
66. Robertson, N.; Potter, C.; Harris, A. L. Cancer Res. 2004, 64, 6160-6165.
67. Taylor, J.; Picelli, G.; Harrison, D. J. Electrophoresis 2001, 22, 3699–3708.
68. Lozan, V.; Solntsev, P. Y.; Leibeling, G.; Domasevitch, K. V.; Kersting, B. Eur. J. Inorg. Chem. 2007, 20, 321-3226
69. Murov, S. Organic Chemistry Directory, 3rd ed. 2003.
70. Lide, D.R. CRC Handbook of Chemistry and Physics, 85th Edition. 2004.
71. Kiyose, K.; Hanaoka, K.; Oushiki, D.; Nakamura, T.; Kajimura, M.; Suematsu, M.; Nishimatsu, H.; Yamane, T.; Terai, T.; Hirata, Y; Nagano, T. J. Am. Chem. Soc. 2010, 132, 15846-15848.
72. Gerowska, M.; Hall, L.; Richardson, J.; Shelbourne, M.; Brown, T. Tetrahedron 2012, 68, 857-864.
73. Vickers, T. 2006. From http://commons.wikimedia.org/wiki/File:Induced_fit_ diagram.svg.
74. Cummings, B. Microbiology, 8th ed. 2004.
75. (a) Zhou, F.; Shao, J.; Yang, Y.; Zhao, J.; Guo, H.; Li, X.; Ji, S.; Zhang, Z. Eur. J. Org. Chem. 2011, 25, 4773-4787.
(b) Allen, B. D.; Benniston, A. C.; Harriman, A.; Rostron, S. A.; Yu, C. Phys. Chem. Chem. Phys. 2005, 7, 3035-3040.