簡易檢索 / 詳目顯示

研究生: 艾拉夫
Aravind Kotcherlakota
論文名稱: 氮化銦與矽的一維奈米結構的電子傳輸物理特性之研究
Physics of electron transport in Indium Nitride and Silicon one dimensional nanostructures
指導教授: 張廖貴術
Chang-Liao, Kuei-Shu
陳啟東
Chen, Chii-Dong
口試委員: 郭華丞
陳正中
張廖貴術
吳憲昌
陳啟東
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 66
中文關鍵詞: 氮化銦電子傳輸物理
外文關鍵詞: Indium Nitride, Silicon, electron transport physics
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ii
    Abstract

    One-dimensional (1D) nano-structures comprising of a wide spectrum of
    materials ranging from Carbon nanotubes to molecular and lithographically patterned
    wires are potential candidates for the next generation electronic devices. In such
    structures, confinement of electron motion results in very fascinating transport
    phenomena which cannot be explained by the classical conduction theory. The
    purpose of this thesis is to present the interesting findings in the quantum transport
    phenomena in silicon and Indium nitride based single electron transistors.

    The first introductory chapter gives few rudimentary ideas in general quantum
    transport theories. The experimental methods for fabricating quantum transport
    devices are then discussed. The key transport phenomena manifesting as
    experimentally measured Magneto Resistance Fluctuations, Electron localization,
    ballistic conductance and strong (coulomb) localized electron systems with tunnel
    barriers as Single Electron Transistors are briefly described.

    In the second chapter, the basic experiments on the measurements of
    Magnetoresistance fluctuations in a weak disorder indium nitride nanowire are
    presented. These fluctuations are reproducible, aperiodic and symmetric in magnetic
    field reversal but are asymmetric upon reversal of bias direction of the current flow.
    The fluctuations are analyzed for both perpendicular and parallel external magnetic
    field configurations in the light of tunnel Magnetoresistance at low field and impurity
    scattering at higher field. The asymmetry in bias reversal has been attributed to the
    breakdown of time reversal symmetry.

    The third chapter deals with fabrication and tunneling transport characteristics
    of Silicon based single electron transistor with lateral succession of a big island and
    small quantum dots. The big island gives rise to a small period Coulomb oscillation
    riding on the large irregular oscillation arising from the small quantum dots. The
    peaks of the latter shift in the presence of magnetic field which is analyzed in the
    context of field-induced Landau level shift with a soft-wall confinement potential.
    Furthermore, the current peak was suppressed for fields beyond a threshold value. An
    explanation based on cyclotron localization at non-interacting Landau levels is
    iii
    presented and consistently described with numerical estimates.

    In the fourth chapter, as new aspect of electron transport phenomena in a single
    electron transistor based on an individual indium nitride nanowire is presented.
    Meticulous Coulomb oscillations are observed at low temperatures. While the device
    shows single period Coulomb oscillation at high temperatures or at high bias voltages,
    additional satellite peaks along with the main Coulomb peak appear at low
    temperatures and low bias voltages. The quasi-periodic structure is attributed to the
    mixing of dissimilar Coulomb oscillations arising from two serially coupled islands
    embedded inadvertently in the surface metallic states of the nanowire. The proposed
    model is numerically simulated with good agreement with the experimental data.

    In the fifth chapter, the physics of single electron transistor fabricated in Double
    Quantum dot geometry are presented and discussed in detail. At around 2K, these
    devices showed clear Coulomb blockade structures. An external perpendicular
    magnetic field was found to enhance the resonant tunneling peak and was used to
    predict the presence of two laterally coupled quantum dots in the narrow constriction
    between the source-drain electrodes. The proposed model and measured experimental
    data were consistently explained using numerical simulations.

    Chapter 6 presents ongoing work on InN nanobelt device showing signatures of
    superconductivity in tunnel junction geometry. It was found that superconducting
    transition takes place at temperature of 1.2K and the critical magnetic field is
    measured to be about 5500Gs. The energy gap extrapolated to absolute temperature is
    about 110μeV. The measured temperature and magnetic field dependences of the
    superconducting gap agree well with the reported dependences for conventional
    metallic superconductors. As the magnetic field is decreased to cross the critical
    magnetic field, the device shows a huge zero-bias magnetoresistance ratio of about
    400%. This is attributed to the suppression of subgap tunneling in the presence of
    superconductivity.

    The overall summary and conclusions are presented in the last chapter 7.


    Contents I. Acknowledgement -------------------------------------------- i II. Abstract ----------------------------------------------------- ii III. Abstract in Mandarin ---------------------------------------- iv 1. Introduction, Background and Motivation 1.1. Device fabrication overview and contact issue -------------- 2 1.2. Devices with low contact resistance -------------------------- 4 1.2.1. Magnetoresistance fluctuations ------------------------- 5 1.2.2. Electron localization in diffusive wires ------------------ 6 1.2.3. Nanowires in ballistic regime ------------------------- 7 1.3. Devices with high contact resistance tunneling barriers ----- 8 2. Magnetoresistance Fluctuations in a Weak Disorder Indium Nitride Nanowire 2.1. Introduction ------------------------------------------------------- 12 2.2. Experimental Details ------------------------------------------- 13 2.3. Results and Discussion ------------------------------------------ 15 2.4. Summary and Conclusions -------------------------------------- 21 3. Cyclotron Localization in a sub-10nm Silicon Quantum Dot Single Electron Transistor 3.1. Introduction ----------------------------------------------------- 23 3.2. Experimental Details ------------------------------------------ 24 3.3. Results and Discussions ----------------------------------- 27 3.4. Comparison with Theoretical Calculations ----------------- 28 3.5. Summary and Conclusions ---------------------------------- 31 4. Coulomb Blockade Behavior in an Indium Nitride Nanowire with Disordered Surface States 4.1. Introduction ------------------------------------------------- 33 4.2. Experimental Details ------------------------------------ 34 4.3. Results and Discussion ------------------------------------ 35 4.4. Comparison with Numerical Simulations -------------------- 39 4.5. Summary and Conclusions ----------------------------------- 41 5. Magnetic Field Enhanced Resonant Tunneling in a Silicon nanowire Single-Electron-Transistor 5.1. Introduction ---------------------------------------------------- 43 5.2. Experimental Details ---------------------------------------- 44 5.3. Results and Discussion ---------------------------------------- 45 5.4. Comparison with Numerical Calculations ------------------ 48 5.5. Discussion --------------------------------------------------- 49 5.6. Summary and Conclusions ----------------------------------- 51 6. Superconductivity of InN nanobelt with tunneling junctions 6.1. Introduction -------------------------------------------------- 52 6.2. Experimental Details --------------------------------------- 53 6.3. Results and Discussion -------------------------------------- 54 6.4. Summary and Conclusions ------------------------------------ 59 7. Summary and Conclusions 7.1. Summary of work on Silicon Devices ---------------------- 61 7.2. Summary of work on Indium Nitride Devices ------------ 62 References -------------------------------------------------------------------- 63

    63
    References
    Chapter-1
    1. P. A. Lee and A. D. Stone, Phys. Rev. Lett., 55, 1622 (1985).
    2. C. W. Beenakker and H. van Houten, Phys. Rev. B, 37, 6544 (1988).
    3. W. J. Skocpol, Physica scripta, T19, 95 (1987).
    4. C. W. J.Beenakker and H. van Houton, Solid state physics, 44, 1 (1991).
    5. R. Landauer, Phil. Mag. 21, 863 (1970).
    6. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press,
    Cambridge, 1995).
    7. Wenjie Liang, Marc Bockrath, Dolores Bozovic, Jason H. Hafner, M. Tinkham
    and Hongkun Park, Nature, 411, 665 (2001).
    8. M. Bockrath, D. H. Cobden et. al, Nature, 397, 598-601 (1999).
    9. E. Slot, Herre van der Zant et al. Phys. Rev. Lett., 93 (2004) 176602.
    Chapter-2
    1. Y.Li, F.Qian, J.Xiang, and C.M. Lieber, Materials Today 9, 18 (2006)
    2. Q.X.Guo, M. Nishio, H. Ogawa et.al, Phys. Rev. B 58, 15304 (1998).
    3. J. Wu, W.Walukiewicz, K.M.Yu, et.al , Appl. Phys. Lett. 80, 3967 (2002).
    4. T.L.Tansley and C.P.Foley, J. Appl. Phys. 59, 3241 (1986).
    5. B. L. Al’tshuler, V. E. Kravtsov, and I. V. Lerner, JETP Lett.43, 441(1986).
    6. M.S.Hu,W.M.Wang,T.T.Chen et.al Adv. Funct. Mater. 16, 537 (2006).
    7. I.Mahboob, T.D.Veal, C.F. Conville et.al Phys. Rev. Lett. 92, 036804 (2004).
    8. I.Mahboob, T.D.Veal, L.F.J.Piper et.al Phys. Rev.B, 69, 201307 (2004).
    9. C.Y.Chang, G.C.Chi, W.M.Wang et.al Appl. Phys. Lett. 87, 093112 (2005).
    10. Ping Sheng, Phys.Rev.B 21, 2180 (1980), Y.H.Lin, S.P.Chiu and J.J.Lin,
    Nanotechnology 19, 365201 (2008).
    11. M.M. Fogler, S.V. Malinin and T.Nattermann, Phys. Rev. Lett. 97, 096601
    (2006).
    12. A L Efros and B I Shklovskii, J. Phys.C: Solid State Phys. 8, 49 (1975); S.
    Beloborodov, A. V. Lopatin, et.al, Rev. Mod. Phys. 79, 469 (2007).
    13. W.Eiler, Jour.Low Temp.Phys. 56,481 (1984).
    14. P.A.Lee and A.D.Stone, Phys. Rev. Lett. 55, 1622 (1985).
    15. C.W.Beenakker and H.van Houten, Phys. Rev. B 37, 6544 (1988).
    16. W. J. Skocpol, Physica scripta, T19, 95 (1987).
    17. C.W.J.Beenakker and H.van Houton, Solid state physics, 44, 1 (1991).
    18. Ch.Blomers, Th.Schapers, T.Richter et.al Appl. Phys. Lett. 92, 132101 (2008);
    Phys.Rev B 77, 201301(R) (2008).
    64
    19. Onsager Phys. Rev. 38, 2265 (1931); H.B.G.Casimir, Rev.Mod. Phys.17, 343
    (1945).
    20. A.Anaya, M.B.Bowman, A.L.Korotkov and D.Davidovic Phy. Rev. B 72,
    035452 (2005).
    21. S.B.Kaplan, Phys.Rev.B 38, 7558(1988).
    22. Z. W. Jia, W. Z. Shen, H.Ogawa and Q.X.Guo, Appl. Phys. Lett. 89, 232107
    (2004).
    23. U.Murek, R.Schafer, W.Langheinrich, Phys.Rev.Lett. 70, 841 (1993);
    P.A.M.Holweg, J.A.Kokkedee, J.Caro et.al Phys.Rev.Lett. 67, 2549 (1991).
    24. C.S. Yang, C.Zhang, J. Redepenning, Appl. Phys. Lett. 84, 2865 (2004).
    25. M.Viret, S.Berger, M.Gabureac et.al, Phys.Rev B 66, 220401 (2002).
    26. E.Y.Tsymbal, A.Sokolov, I.F.Sabirianov et.al Phys. Rev. Lett. 90, 186602
    (2003).
    27. R.P. Tan, J.Carrey, C.Desvaux, et.al Phys. Rev. Lett. 99, 176805 (2007).
    28. K.Hamaya M.Kitabatake, M.Jung et.al Appl. Phys. Lett. 93, 222107 (2008).
    29. L.K.Castelano, G.Q.Hai and M.T.Lee Phys. stat. sol.(c) 4, 466(2007).
    30. B.Solleder, C.Lemell, K.Tokesi et.al Phys. Rev B 76, 075115 (2007).
    Chapter-3
    1. D. Heiss, ‘Quantum Dots: Door way to Nano scale physics’ Lect. Notes in Phys,
    (Springer, Berlin, 2005).
    2. M. Bayer, O. Stern, P. Hawrylak, et.al Nature 405, 923 (2000).
    3. H. Grabert and M. H. Devoret, ‘Single Charge Tunneling’, (Plenum Press, New
    York, 1992).
    4. R. C. Ashoori, H. L. Stormer, J. S. Weiner et.al Phys. Rev. Lett. 68, 3088 (1992).
    5. B. Meurer, D. Heitmann, and K. Ploog, Phys. Rev. Lett. 68, 1371 (1992).
    6. L. P. Rokhinson, L. J. Guo, S. Y. Chou et.al Phys. Rev. Lett. 87, 166802 (2001).
    7. L. P. Rokhinson, L. J. Guo, S. Y. Chou et.al Phys. Rev. Lett. 88, 186801 (2002).
    8. L. P. Rokhinson, L. J. Guo, S. Y. Chou et.al Phys. Rev. B 63, 035321 (2001).
    9. L. P. Kouwenhoven, D. G. Austing and S. Tarucha, Rep. Prog. Phys. 64, 701
    (2001).
    10. Y. Hada and M. Eto, Phys. Rev. B 68, 155322 (2003).
    11. K. Natori, T. Uehara and N. Sano, Jpn. J. Appl. Phys. 39, 2550 (2000).
    12. K. Yano, T. Ishii, T. Hashimoto et.al IEEE Trans. Electron Devices 41, 1628
    (1994).
    13. B. J. van Wees, L. P. Kouwenhoven, C. J. P. M. Harmans et.al Phys. Rev. Lett.
    62, 2523 (1989).
    14. V. Fock, Z. Phys. 47, 446 (1928).
    15. L.L. Sohn, L. P. Kouwenhoven, G. Schon, ‘Mesoscopic Electron Transport’,
    65
    (Kluwer, Dordrecht, 1997).
    16. P. L. McEuen, E. B. Foxman, U. Meirav et.al Phys. Rev. Lett. 66, 1926 (1991).
    17. H. Van Houton, C. W. J. Beenakker, A. A. M. Staring, cond-mat/0508454 v1 19
    Aug 2005.
    18. A. T. Tilke, F. C. Simmel, R. H. Blick et.al Prog.Qua.Electron. 25, 97(2001).
    19. A. Tilke, R. H. Blick, H. Lorenz, J. Appl. Phys. 90, 942 (2001).
    20. V. Ranjan, R.K.Pandey, M.K.Harbola, et.al Phys. Rev. B 65, 045311 (2002).
    M. Macucci, K. Hess, G. J. Iafrate, Phys. Rev. B 55, R4879 (1997).
    Chapter-4
    1. Y.Li, F.Qian, J.Xiang, and C.M. Lieber, Materials Today 9, 18 (2006)
    2. Jie Xiang, Wei Lu, Yongjie Hu, et.al Nature 441, 489 (2006)
    3 J. Wu, W.Walukiewicz, K.M.Yu, et.al Appl. Phys. Lett. 80, 3967 (2002).
    4 M.S.Hu,W.M.Wang,T.T.Chen et.al Adv. Funct. Mater. 16, 537 (2006).
    5 H.Grabert,. and M. H.Devoret, ‘Single Charge Tunneling’, (Plenum Press, New
    York,1992), Vol. 294.
    6 I.Mahboob,T.D.Veal, L.F.J.Piper et.al Phys. Rev.B 69, 201307 (2004).
    7. I.Mahboob, T.D.Veal, C.F.McConville et.al Phys. Rev. Lett. 92,036804 (2004).
    8. F.Werner, F.Limbach, M.Carsten et.al Nano Lett. 9, 1567 (2009)
    9. V.Houten and C.W.J. Beenakker Phys. Rev. Lett. 63 1893 (1989)
    10. L. I. Glazman and V.Chandrasekhar Euro.Phys. Lett. 19 , 623 (1992)
    Chapter-5
    1. A.O.Orlov, I.Amlani, G.H.Bernstein et.al Science 277, 928 (1997).
    2. K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, L. M. K. Vandersypen, Science
    318, 1430 (2007) App. Phys. Lett., 89, 023111 (2006).
    3. E. B. Foxman, P.L.McEuen, U. Meirav, Ned S. Wingreen, Yigal Meir, Paul A.
    Belk, N. R. Belk, M. A. Kastner and S. J. Wind., Phys. Rev. B, 47, 10 020 (1993).
    4. N. C. van der Vaart, S. F. Godijn, Y. V. Nazarov, C. J. P. M. Harmans, J. E. Mooij,
    L. W. Molenkamp, C. T. Foxon Phys. Rev. Lett., 74, 4702 (1995).
    5. L. Zhuang, L.Guo, and S.Y.Chou Appl. Phys. Lett., 72, 1205 (1998).
    6. M.C.Lin, K.Aravind, C.S.Wu, Y.P.Wu, C.H.Kuan, Watson Kuo, C.D.Chen, Appl.
    Phys. Lett., 90, 032106 (2007).
    7. K. Yano, T. Ishii, T. Hashimoto et.al IEEE Trans Electron Devices 41, 1628
    (1994).
    8. J. A. Melsen, Ulrik Hanke, H.O. Muller et.al Phys. Rev.B, 55, 10638 (1997).
    9. M. Amman and R. Wilkins, E. Ben-Jacob et.al, Phys. Rev. B, 43, 1146 (1991).
    10. A. Zaslavsky, V.J.Goldman, D. C. Tsui et.al Appl.Phys.Lett., 53, 1408 (1988).

    66
    Chapter-6
    1. J. Wu, W. Walukiewicz, K. M. Yu, et.al , Appl. Phys. Lett. 80, 3967 (2002).
    2. Q. X. Guo, M. Nishio, H. Ogawa , A. Wakahara and A. Yoshida, Phys. Rev. B 58,
    15304 (1998);T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986).
    3. I. Mahboob, T. D. Veal, C. F. McConville, et.al, Phys. Rev.Lett., 92, 036804
    (2004). I. Mahboob, T. D. Veal, L. F. J. Piper, et.al, Phys. Rev. B 69, 201307
    (2004)
    4. T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, S.
    Motokawa, and S. Ohoya, J. Cryst. Growth, 227, 481 (2001).
    5. T. Inushima Science and Technology of Advanced Materials 7, S112 (2006); T.
    Inushima, M. Higashiwaki, T. Matsui, T. Takenobu, and M. Motokawa,
    Phys. Rev. B 72, 085210 (2005).
    6. T. Inushima, N. Kato, T. Takenobu and M. Motokawa, Phys. Stat. Sol. (a) 203, 80
    (2006).
    7. D. C. Ling, J. H. Cheng, Y. Y. Lo, C. H. Du, A. P. Chiu, C. A. Chang, and P. H.
    Chang, Phys. Stat. Sol. (b), 244, 4594 (2007)
    8. M. S. Hu, W. M. Wang, T. T. Chen, L. S. Hong, C. W. Chen, C. C. Chen, Y. F.
    Chen, K. H. Chen, and L. C. Chen, Adv. Funct. Mater. 16, 537 (2006)
    9. H. S. J. van der Zant, W. J. Elion, L. J. Geerligs, and J. E. Mooij, Phys.Rev B, 54,
    10081 (1996).
    10. Y. W. Su, K. Aravind, C. S. Wu, et.al J. Phys. D: Appl. Phys. 42, 185009 (2009).
    11. M. Tinkham, Introduction to superconductivity, 2nd edition, 18-19 and page 63,
    Dover publications, Inc (1996).
    12. F. Giubileo, D. Roditchev, W. Sacks, et.al Phys. Rev. Lett. 87, 177008 (2001); F.
    Giubileo, D. Roditchev, W. Sacks, R. Lamy and J. Klein, Europhys. Lett., 58, 764
    (2002).
    13. K. Aravind, Y. W. Su,I. L. Ho, et.al App.Phys.Lett 95, 092110 (2009) and
    references therein.
    14. D.B. Haviland and Per Delsing Phys. Rev. B 54, R6857 (1996).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE