簡易檢索 / 詳目顯示

研究生: 藍偉華
論文名稱: 晶格波茲曼法在高密度比下之多相流模型
A lattice Boltzmann multiphase fluid model with large density ratio
指導教授: 林昭安
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 59
中文關鍵詞: 兩相流高密度比氣泡
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, a lattice Boltzmann multiphase fluid model capable to deal with large density ratio is proposed. Multiphase fluid can be computed using the the Navier--Stokes equations in conjunction with a convective Cahn-Hilliard equation [22], where the latter equation is used to capture the interface of multiphase fluid with large density difference. The free energy is incorporated
    into the Cahn-Hilliard equation to model the effects of the surface tension and the interface width and the formulation adopted is that proposed by Zheng et al [36]
    For the multiphase model of Zheng et al.[36], two different lattice Boltzmann equations are used to model the Naiver--Stokes equation and the Cahn-Hilliard equation, and the corresponding lattice models are D2Q9 and D2Q5,respectively. Also, the adopted equilibrium distribution functions are also different. To unify the
    formulation, we propose a multiphase model using D2Q9 lattice model, where the adopted equilibrium distribution functions are the same for both the Navier-Stokes and the Cahn-Hilliard equations, except that the leading quantities are density and scalar, respectively. The Cahn-Hilliard equation consists of two processes. One is the convective transport for scalar and the other one is the diffusive
    transport for chemical potential, which is related to the free energy. The convective part is modeled through the convective and diffusive equation for scalar without chemical potential term. Therefore, a source term is added to recover the chemical potential term in the Cahn-Hilliard equation.

    The capability of the present model to compute two phase flows with high density ratio (>1000) is validated by simulating one bubble in the stationary fluid and two merging bubbles. Predicted surface tension coefficient obtained from the Laplace's law and the interface profile agree very well with the respective analytical
    solutions. Factors affecting the evolutions of the bubble dynamic are also discussed, i.e., the mobility coefficient, surface tension coefficietn, interface width, and the gap between two bubbles.


    1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Multiphase and multicomponent fluid systems . . . . . . . . . 2 1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Lattice Boltzmann multiphase fluid model . . . . . . . . . . . 3 1.2.2 Lattice Boltzmann multiphase fluid model with large density ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Objective and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 The governing equation 9 2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 The BGK and the low-Mach-number approximation . . . . . . . . . . 10 2.2.1 The BGK approximation . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 The low-Mach-number approximation . . . . . . . . . . . . . . 12 2.3 Discretization of the Boltzmann equation . . . . . . . . . . . . . . . . 13 2.3.1 Discretization of phase space . . . . . . . . . . . . . . . . . . . 13 2.3.2 Dicretization of time . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 The free-energy model . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.1 The free-energy function . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 Analytical solution of interface pro‾le . . . . . . . . . . . . . . 17 iii 2.5 A Lattice Boltzmann model for multiphase flows with large density ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5.1 The governing equation . . . . . . . . . . . . . . . . . . . . . . 18 2.5.2 Lattice Boltzmann equaiton . . . . . . . . . . . . . . . . . . . 18 2.5.3 Interface capturing equation . . . . . . . . . . . . . . . . . . . 19 2.6 A lattice Boltzmann multiphase fluid model with large density ratio . 20 2.6.1 The governing equation . . . . . . . . . . . . . . . . . . . . . . 20 2.6.2 Lattice Boltzmann equation . . . . . . . . . . . . . . . . . . . 21 2.6.3 Interface capturing equation . . . . . . . . . . . . . . . . . . . 22 3 Numerical algorithm 24 3.1 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Boundary conditions for the computational domain . . . . . . . . . . 25 3.2.1 Velocity boundary condition . . . . . . . . . . . . . . . . . . . 26 3.2.2 The periodic boundary condition . . . . . . . . . . . . . . . . 28 3.3 Mass error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4 Numerical results 29 4.1 A bubble in the stationary flow . . . . . . . . . . . . . . . . . . . . . 29 4.1.1 Laplace's Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.2 The interface profile . . . . . . . . . . . . . . . . . . . . . . . 30 4.1.3 The velocity ‾eld of multiphase fluids . . . . . . . . . . . . . . 30 4.1.4 The e®ects of the mobility coeffcient . . . . . . . . . . . . . . 32 4.1.5 The e®ect of interface width and surface tension . . . . . . . . 33 4.2 Two bubbles in the stationary flow . . . . . . . . . . . . . . . . . . . 34 4.2.1 The e®ect of the gap between two bubbles . . . . . . . . . . . 34 4.2.2 The e®ect of the mobility coeffcient . . . . . . . . . . . . . . . 35 5 Conclusions 37 iv

    [1] U. Frisch, B. Hasslacher, and Y. Pomeau, \Lattice-gas automata for the Navier-
    Stokes equation," Phys. Rev. Lett. 56, 1505, (1986).
    [2] S. Wolfram, \Cellular automaton fluids 1: Basic theory," J. Stat. Phys. 45,
    471, (1986).
    [3] F. J. Higuera, S. Sussi, and R. Benzi, \3-dimensional flows in complex
    geometries with the lattice Boltzmann method," Europhys. Lett. 9, 345, (1989).
    [4] F. J. Higuera, and J. Jem¶enez, \Boltzmann approach to lattice gas
    simulations," Europhys. Lett. 9, 663, (1989).
    [5] P. L. Bhatnagar, E. P. Gross, and M. Grook, \A model for collision processes
    in gases. I. small amplitude processes in charged and neutral one-component
    systems," Phys. Rev. E 94, 511 (1954).
    [6] S. Harris, \An introduction to the throry of the Boltzmann equation," Holt,
    Rinehart and Winston, New York, (1971).
    [7] U. Frisch, D. d'Humiµeres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.
    P. Rivet, \Lattice gas hydrodynamics in two and three dimensions," Complex
    Syst. 1, 649, (1987).
    [8] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery,
    \Comparison of spectral method and lattice Boltzmann simulations of two-
    dimensional hydrodynamics," Phys. Fluids 6, 1285, (1994).
    54
    Bibliography 55
    [9] R. Scardovelli and S. Zaleski. \Direct numerical simulation of free-surface and
    interfical flow," Annu.Rev.Fluid Mech.,31:567(1999).
    [10] S. Osher and R. P, Fedkiw. \Level set method: An overview and some recent
    results," J. Comput. Phys., 169:463,(2001).
    [11] T. Y. Hou, J.S. Lowengrub,and M.J.Shelley. \Boundary integral methods
    for multicomponent fluids and multiphase materials " J. Comput.Phys., 169:
    302,(2001).
    [12] A Gunstensen, D. Rothman, S. Zaleski, and G. Zanetti.\ Lattice Boltzmann
    model of immiscible fluids. " Phys. Rev. A, 43:4320-4327,(1991).
    [13] D. Rothman and J. Keller.\ Immiscible cellular-automaton fluids " J. Stat.
    Phys., 52(3-4):1119-1127,(1988).
    [14] X. Shan and H. Chen\ Lattice Boltzmann model for simulating flows with
    multiple phases and components. " Phys. Rev. E, 47:1815-1819,(1993).
    [15] Shan, X., and Chen, H., "Simulation of Nonideal Gases and Liquid-GasPhase
    Transitions by the Lattice Boltzmann Equation," Phys. Rev. E, 49, pp. 2941-
    2948.(1994)
    [16] Shan, X., and Doolen, G. D., "Multicomponent Lattice-Boltzmann Model With
    Interparticle Interaction," J. Stat. Phys., 81, pp. 379-393.(1995)
    [17] Yang, Z. L., Palm, B., and sehgal, B. R.,"Numerical simulation of bubbly
    two-phase °ow in a narrow channel,"International Journal of Heat and Mass
    Transfer , vol. 45, No. 3,pp. 631-639, (2002)
    [18] Jonathan, Chin, Edo, S. Boek and Peter. V. Coveney,"Lattice Boltzmann
    simulation of the flow of binary immiscible fluids with different viscosities
    using the Shan-Chen microscopic interaction model," The Royal society,
    10.1098/rsta.2001.0953(2002)
    Bibliography 56
    [19] Sukop ,M.C.,and Or, D., "Invasion percolation of single component, multiphase
    fluids with Lattice Boltzmann models,"Physica B,Vol.338 No.1-4,pp.298-
    303,(2003)
    [20] M. R. Swift, W. R. Osborn, and J. M. Yeomans "Lattice Boltzmann simulation
    of nonideal fluids." Phys. Rev. Lett.,75(5):830-833(1995)
    [21] M. R. Swift, W. R. Osborn, and J. M. Yeomans " Lattice Boltzmann
    simulations of liquid-gas and bunary-°uid systems."Phys. Rev. E,54:5041-
    5052(1996)
    [22] J.W. Cahn, J.E Hilliard," Free energy of a nonuniform system.-Interfacial
    energy," J. Chem. Phys. 28(2)(1958)
    [23] Nourgaliev, R. R.; Dinh, T. N. and Sehgal, B. R.,"On lattice Boltzmann
    modeling of phase transitions in an isothermal non-ideal fluid, "Nucl. Engng.
    Des., 211, 153.(2002)
    [24] Nourgaliev, R. R.; Dinh, T. N.; Theofanous T. G. and Joseph D., "The
    lattice Boltzmann equation method: theoretical interpretation, numerics and
    implications, "Int. J. Multiphase Flow, 29, 117.(2003)
    [25] Nie, X.; Qian, Y.-H.; Doolen, Gary D. and Chen, S.," Lattice Boltzmann
    simulation of the two-dimensional Rayleigh-Taylor instability, "Phys. Rev. E,
    58(5), 68 (1998)
    [26] Briant, A. J.; Papatzacos, P. and Yeomans, J. M., "Lattice Boltzmann
    simulations of contact line motion in a liquid-gas system, " Phil. Trans. Roy.
    Soc. A , 360, 485. (2002)
    [27] Takada, N.; Misawa, M.; Tomiyama, A. and Hosokawa, S., "Simulation of
    bubble motion under gravity by lattice Boltzmann method, "J. Nucl. Sci.
    Technol., 38(5), 330. (2001)
    Bibliography 57
    [28] Lamura, A.; Gonnella, G. and Yeomans, J. M., "A lattice Boltzmann model of
    ternary fluid mixtures, "Europhys. Lett., 99,314.(1999)
    [29] X. He, X. Shan, G.D. Doolen, "A discrete Boltzmann equation model for non-
    ideal gases, " Phys. Rev. E 57 R13 (1998)
    [30] X. He, L. Luo, "A discrete Boltzmann equation model for non-ideal gases, "
    Phys. Rev. E 55 R6333 (1997)
    [31] S. Teng, Y. Chen, H. Ohashi, "Lattice Boltzmann simulation of multiphase
    fluid flows through the total variation diminishing arti‾cial compression
    scheme, "Int. J. Heat Fluid Flow 21 112V121 (2000)
    [32] T. Inamuro, T. Ogata, S. Tajima, N. Konishi, "A lattice Boltzmann method
    for incompressible two-phase flows with large density differences, "J. Comput.
    Phys. 198 628. (2004)
    [33] T. Lee, C.-L. Lin, "A stable discretization of the lattice Boltzmann equation for
    simulation of incompressible two-phase flows at high density ratio, "J. Comput.
    Phys. 206 16V47.(2005)
    [34] X. He, S. Chen, R. Zhang, "A lattice Boltzmann scheme for incompressible
    multiphase flow and its application in simulation of RayleighV Taylor
    instability, "J. Comput. Phys. 152 (2) 642V663. (1999)
    [35] D. Jamet, O. Lebaigue, N. Coutris, J.M. Delhaye, "The second gradient method
    for the direct numerical simulation of liquidVvapor flows with phase change, "
    J. Comput. Phys. 169 (2001) 624V651.
    [36] H. W. Zheng, C. Shu, Y. T. Chew, "A lattice Boltzmann model for multiphase
    flows with large density ratio " JCP, Phys, 218 353V371 (2006)
    [37] A. Lamuro, S. Succi "A Lattice Boltzmann for disordered fluids, " Int. J. Mod.
    Phys . B17 145-148 (2003)
    Bibliography 58
    [38] Deng Bin, Shi Bao-Chang, Wang Guang-Chao, "A New Lattice Bhatnagar-
    Gross-Krook model for the convection-Diffusion Equation with a Source Term"
    Chin. Phys . Lett. Vol. 22, NO.2 267 (2005)
    [39] Tamas I. Gombosi, \Gas kinetic theorym," Cambridge University Press,
    (1994).
    [40] X. He, and L. S. Luo, \Theory of the lattice Boltzmann method: From the
    Boltzmann equation to the lattice Boltzmann equation," Phys. Rev. E 56,
    6811-6817 (1997).
    [41] D. A. Wolf-Gladrow, \Lattice-gas cellular automata and lattice Boltzmann
    models - an introduction," Springer, Lecture Notes in Mathematics, p.159,
    (2000).
    [42] J.S. Rowlinson, B. Widom, "Molecular Theory of Capillarity, Clarendon,
    "Oxford, (1989).
    [43] V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.-C. Desplat, P. Bladon,
    "Inertial effects in three-dimensional spinodal decomposition of a symmetric
    binary fluid mixture: a lattice Boltzmann study, "J. Fluid Mech. 440 147V203.
    (2001)
    [44] D. Jamet, O. Lebaigue, N. Coutris, J.M. Delhaye, "The second gradient method
    for the direct numerical simulation of liquidVvapor flows with phase change, "
    J. Comput. Phys. 169 624V651. (2001)
    [45] V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.-C. Desplat, P. Bladon, Inertial
    effects in three-dimensional spinodal decomposition of a symmetric binary fluid
    mixture: a lattice Boltzmann study, J. Fluid Mech. 440 (2001) 147V203.
    [46] H. W. Zheng, C. Shu, Y. T. Chew, " Lattice Boltzmann interface capturing
    method for imcompressible, " Phys, Rev, E72, 056705 (2005)
    Bibliography 59
    [47] D. Jacqmin, " Calculation of two-phase NavierVStokes °ows using phase-field
    modeling, " J. Comput. Phys. 155 96V127. (1999)
    [48] Z. Guo, C. Zhen, B. Shi, "Discrete lattice effects on the forcing term in the
    lattice Boltzmann method, " Phys. Rev. E 65 (4) ,046308.(2002)
    [49] C. Cheng "Curved boundary techniques in lattice Boltzmann method to
    simulate complex geometry flows, " , master thesis, National Tsing Hua
    University, Taiwan, (2007)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE